
Open Science
replicability, reproducibility, and robustness

Dr. Blazej M. Baczkowski �

February 11, 2025

https://namedrop.io/blazejbaczkowski
https://orcid.org/0000-0002-1825-0097


Table of contents

Welcome 5
Target audiance . . . . . . . . . . . . . . . . . . . . . . 5
Course objectives . . . . . . . . . . . . . . . . . . . . . 6
Citation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Acknowledgment . . . . . . . . . . . . . . . . . . . . . 7
Funding . . . . . . . . . . . . . . . . . . . . . . . . . . 7
(Main) References . . . . . . . . . . . . . . . . . . . . 7
Recommended reading . . . . . . . . . . . . . . . . . . 8
Useful Links . . . . . . . . . . . . . . . . . . . . . . . . 8

I Credibility revolution 10

1 Introduction 11

II Statistical reasoning 12

2 Invention and test 13

3 The likelihood paradigm 14
3.1 What is meant by likelihood? . . . . . . . . . . . 14
3.2 The law of likelihood . . . . . . . . . . . . . . . . 22
3.3 Support intervals . . . . . . . . . . . . . . . . . . 24
3.4 Probability of obtaining weak and misleading ev-

idence . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Is the observed evidence misleading? . . . . . . . 32
3.6 Summary: Evidential metrics . . . . . . . . . . . 34
3.7 Exercises . . . . . . . . . . . . . . . . . . . . . . 35
3.8 Relation to Open Science . . . . . . . . . . . . . 35
3.9 References . . . . . . . . . . . . . . . . . . . . . . 36

4 The Bayesian paradigm 40
4.1 Conditional probability . . . . . . . . . . . . . . 40

2



4.2 Bayesian data analysis . . . . . . . . . . . . . . . 47
4.3 Accumulating evidence over time . . . . . . . . . 53
4.4 Summarizing the posterior . . . . . . . . . . . . . 55
4.5 The Savage–Dickey (pointwise) density ratio . . . 60
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . 66
4.7 Exercises . . . . . . . . . . . . . . . . . . . . . . 67
4.8 Relation to Open Science . . . . . . . . . . . . . 67
4.9 Recommendations . . . . . . . . . . . . . . . . . 68
4.10 References . . . . . . . . . . . . . . . . . . . . . . 68

5 The frequentist paradigm 69
5.1 Notion of probability – foundation and interpre-

tation . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 The sampling distribution . . . . . . . . . . . . . 72
5.3 Single study . . . . . . . . . . . . . . . . . . . . . 79
5.4 Confidence procedures and intervals . . . . . . . 81
5.5 Significance testing (R. Fisher) . . . . . . . . . . 87
5.6 Hypothesis testing (J. Neyman + E. Pearson) . . 91
5.7 Relevance to Open Science . . . . . . . . . . . . . 101
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . 104
5.9 Recommendations . . . . . . . . . . . . . . . . . 104
5.10 References . . . . . . . . . . . . . . . . . . . . . . 105

6 Example 106
6.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . 106
6.2 Frequentists . . . . . . . . . . . . . . . . . . . . . 108
6.3 Bayesian . . . . . . . . . . . . . . . . . . . . . . . 113
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . 115

III Reproducibility 116

7 Data management 117

8 Version control 118

9 Reproducible environments 119

10 GNU Make 120

3



IV Communication 121

11 Data visualisation 122

12 Open data and materials 123

13 Publishing 124

References 125

4



Welcome

In recent years, the scientific community has faced a signifi-
cant challenge where many key research findings failed to repli-
cate, undermining the trustworthiness of scientific research (so
called replication crisis). In response, a transformative shift
has emerged (credibility revolution) focused on promoting trans-
parency, reproducibility, and robustness through Open Science
practices. This course will explore how these practices are
restoring trust and enhancing the quality of research. Through
a range of activities (presentations, journal-club discussions,
and hands-on exercises) students gain insight into how Open
Science is reshaping scientific practices. In this course, stu-
dents develop practical skills for navigating, contributing, and
assessing the evolving academic standards. This seminar is de-
signed to benfit everyone regardless whether you plan to pursue
a career in academia or beyond – as recipients of science, we
are all impacted by its quality and advancements.

Target audiance

• Students from BSc / MSc level (with a background in
psychology / social sciences)

• Background in statistical concepts and analysis software
(e.g., R) is helful but not necessary

• Interest in research quality, transparency, and communi-
cation
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Course objectives

The primary goal of the seminar is to familiarize students with
the tools and practices of Open Science, equipping them with
the knowledge and skills to integrate these principles into their
own academic activity but also to critically evaluate the work of
others, fostering scientific rigor. To name a few specific goals:

• Students can identify several key examples that con-
tributed to the so-called replication crisis, as well as the
practices that have since emerged to mitigate such issues
in the future.

• Students understand the rigor and current trends in aca-
demic standards that make research trustworthy. For ex-
ample, students recognize the importance of transparency
in research and can differentiate between high-quality, re-
producible research and studies with potential biases or
methodological flaws.

• Students can evaluate the benefits and challenges of Open
Science practicies in their field of study. For example,
students can assess how open access policies improve the
dissemination, accessibility, and quality of research with
their limitations with respect to legal and ethical consid-
erations.

• Students have practical skills in using Open Science tools,
for example, how to write reproducible analysis code and
openly share their study materials in appropriate reposi-
tories.

• Students have a good overview of what makes scientific
research credible.

The course material encourages students to develop a mid-set
for seeing their studies (and beyond) as an ongoing epistemic
activity rather than a fixed body of knowledge that needs to
be consumed.

Citation

Kellie, D., Kar, F., Balasubramaniam, S., Schneider, M.,
Schwenke, A., Torresan, O., Waite, C., Fenker, J., Westgate,
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M. (2024). Cleaning Biodiversity Data in R. (Version 1.0.0).
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3 The likelihood paradigm

Researchers often state, “We found (strong) evidence for…” But
what exactly qualifies as evidence in this context? The short an-
swer is data. The longer answer is that data become evidence
when they are more likely under one hypothesis than another.
In other words, data alone do not constitute evidence – they
gain evidential value through likelihood comparisons. This con-
cept is grounded in the likelihood paradigm (Royall, 1997),
which provides the statistical foundation for such claims.

3.1 What is meant by likelihood?

3.1.1 Starting with a toy example: a coin tossing
experiment

Imagine that we flip a coin and record its outcome. To simplify,
we ignore the angle the coin was thrown at, physical properties
of the throw, and other things like that… Because of our igno-
rance, we cannot perfectly predict the behavior of the coin (i.e.,
we deal with an uncertain situation). Therefore, our descrip-
tion (i.e., idealization) of a coin flip is probabilistic rather than
deterministic.

How shall we describe our experiment? The outcome of a coin
flip can result in only one of two events: landing heads up or
tails up. Let us assume that our coin is fair, i.e., landing heads
or tails up is equally likely. Hence, the probability of a coin
landing heads up is 1/2. Next, we flip a coin twice and assume
that the result of the first flip does not affect the result of the
second flip (which seems rational) – the results of coin flips are
independent. Additionally, each coin toss is assumed to be gen-
erated by the same underlying process, which we describe by
saying that the flips are identically distributed. Hence, together
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the the flips are independent and identically distributed (i.i.d.).
Alternatively, we say that we have a random sample. Most
importantly, however, our description constitutes a valid prob-
abilistic model1, because the probabilities of individual events
are non-negative and they sum up to 1.

What is the probability of getting two heads in
a row?

The probability of flipping heads in a single coin toss
given a parameter 𝜃 can be denoted as:

𝑃 𝑟(𝐻|𝜃)

If we assume the flips are independent events, then we
multiply the probability of getting heads on the first
flip by the probability of getting heads on the second
flip (i.e., we obtained heads on the first flip and heads
on the second flip). Since both flips are independent
and were generated by the same underlying process,
we have:

𝑃𝑟(𝐻, 𝐻|𝜃) = 𝑃𝑟(𝐻|𝜃) × 𝑃𝑟(𝐻|𝜃)

In the case of a fair coin, where 𝜃 = 1/2, the equation
would give:

𝑃𝑟(𝐻, 𝐻|𝜃 = 1/2) = 1/2 × 1/2 = 1/4

1We will provide a more detailed description of what a probabilistic model
entails in the next lecture.
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What are all the possible outcomes of an ex-
periment with two coin flips?

So now, we intend to perform the experiment – to toss
a fair coin twice. What is the list of all possible out-
comes we may expect before we flip the coin?

• 𝑃𝑟(𝐻, 𝐻|𝜃 = 1/2) = 1/4

• 𝑃𝑟(𝑇 , 𝑇 |𝜃 = 1/2) = 1/4

• 𝑃𝑟(𝑇 , 𝐻|𝜃 = 1/2) = 1/4

• 𝑃𝑟(𝐻, 𝑇 |𝜃 = 1/2) = 1/4

When we ignore the order of outcomes, we can sim-
plify:

• 𝑃𝑟(0𝐻|𝜃 = 1/2) = 1/4

• 𝑃𝑟(1𝐻|𝜃 = 1/2) = 1/2 = 𝑃𝑟(𝐻, 𝑇 |𝜃 = 1/2) +
𝑃𝑟(𝑇 , 𝐻|𝜃 = 1/2)

• 𝑃𝑟(2𝐻|𝜃 = 1/2) = 1/4

3.1.2 Why to use likelihood rather than probability?

We have established above that when we specify the fairness of
a coin with a 𝜃 parameter, we obtain a valid probabilistic model.
In other words, when we hold the parameters of our model fixed
(e.g., 𝜃 = 1/2), the resultant distribution of possible data is a
probability distribution that sums up to 1. However, when the
data are fixed and the parameters vary, the obtained proba-
bility distribution of our parameters do no sum up to 1.

Let us illustrate the principle by varying the data on one hand
and varying the parameter 𝜃 on the other. In the table Ta-
ble 3.1, we make 𝜃 to take on one of 6 discrete values 𝜃 ∈
{0, 0.2, 0.4, 0.6, 0.8, 1}. And generate data by flipping the coin
two times, which may result in one of the three possible number
of heads: {0𝐻, 1𝐻, 2𝐻}. Moving along each row per column
(i.e., holding the parameter fixed), the values sum up to 1. In
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contrast, moving along each column per row (i.e., holding the
data fixed), the values do not sum up to 1.

Table 3.1: Probability vs Likelihood

Theta
= 0

Theta
= 0.2

Theta
= 0.4

Theta
= 0.6

Theta
= 0.8

Theta
= 1

Outcome
= 0H

1 0.64 0.36 0.16 0.04 0

Outcome
= 1H

0 0.32 0.48 0.48 0.32 0

Outcome
= 2H

0 0.04 0.16 0.36 0.64 1

How is this relevant? Because in our daily statistical life, the
data are fixed – the obtained data are a realization of an un-
derlying generative process. Hence, we use the term likelihood
to expresses the probability of observing the given data as a
function of the parameters.

Equivalence relation

Given a probability density function 𝑓 such that

𝑥 ↦ 𝑓(𝑥|𝜃),

where 𝑥 represents data and 𝜃 represents parameters, the
likelihood function is

𝜃 ↦ 𝑓(𝑥|𝜃).
In other words, when 𝑓(𝑥|𝜃) is viewed as a function of
𝑥 with 𝜃 fixed, it is a probability density function, and
when 𝑓(𝑥|𝜃) is viewed as a function of 𝜃 with fixed 𝑥, it is
a likelihood function.2
To emphasize the distinction, we often write:

ℒ(𝜃|𝑥) = 𝑝(𝑥|𝜃).

2In the frequentist paradigm, the notation 𝑓(𝑥|𝜃) is often avoided and
instead 𝑓(𝑥; 𝜃) or 𝑓(𝑥, 𝜃) are used to indicate that 𝜃 is regarded as a
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3.1.3 Introducing the binomial likelihood function

What kind of a likelihood function did we just use to describe
our coin tossing experiment? What kind of a probabilistic
model did generate the data?

Let us revisit our toy example step by step again but in a more
formal way. The status of an individual coin can be denoted
by a binary random variable 𝑋3, which takes on one of the two
values:

𝑋 = {0 when tail,
1 when head.

(3.1)

Bernoulli distribution

If 𝑋 is a random variable with
a Bernoulli distribution, then:

𝑃𝑟(𝑋 = 1) = 𝜃,
𝜃 = 1 − 𝑃𝑟(𝑋 = 0).

The probability density func-
tion 𝑝 of this distribution over
possible outcomes 𝑘 ∈ {0, 1}
is:

𝑝(𝑘; 𝜃) = 𝜃𝑘(1 − 𝜃)1−𝑘.

We can also informally write
that the random variable 𝑋
comes from Bernoulli trials:

𝑋 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜃).

Therefore, the probability of an outcome for an individual coin
described by the parameter 𝜃 is:

𝑃𝑟(𝑋 = 1|𝜃) = 𝜃,
𝑃𝑟(𝑋 = 0|𝜃) = 1 − 𝜃. (3.2)

If we write these two expressions in a single rule, we obtain the
following:

𝑃𝑟(𝑋 = 𝑘|𝜃) = 𝜃𝑘(1 − 𝜃)1−𝑘 (3.3)

where 𝑘 ∈ {0, 1}. The Equation 3.3 is known as Bernoulli
probability density.

If a random experiment has exactly two possible outcomes (typ-
ically referred to as success and failure), which probability is
the same every time the experiment is conducted, then we refer
to such a random process as a Bernoulli trial4. In our toy ex-
ample, we perform two Bernoulli trials 𝑋1 and 𝑋2 that result

fixed unknown quantity rather than an outcome of a random process
which 𝑥 is conditioned on. More on that in the next lecture.

3A random variable is a function that maps outcomes of an experiment
to numerical values.

4Another example of a Bernoulli trial would be rolling a die and checking
if you get a “6” or not. Getting a “6” is a success, and any other number
is a failure.
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in two independent and identically distributed observations 𝑘1
and 𝑘2:

𝑃𝑟(𝑋1 = 𝑘1, 𝑋2 = 𝑘2|𝜃) = 𝜃𝑘1(1 − 𝜃)1−𝑘1 × 𝜃𝑘2(1 − 𝜃)1−𝑘2

(3.4)

Note that the Equation 3.4 can be simplified by rearranging
exponent expressions, which yields:

𝑃𝑟(𝑋1 = 𝑘1, 𝑋2 = 𝑘2|𝜃) = 𝜃𝑘1+𝑘2(1 − 𝜃)2−𝑘1−𝑘2 (3.5)

Binomial distribution

The probability of getting ex-
actly 𝑘 successes in 𝑛 inde-
pendent Bernoulli trials with
the same probability 𝜃 is given
by the probability density func-
tion 𝑝 such that:

𝑝(𝑘, 𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1−𝜃)𝑛−𝑘.

We can also informally write
that the random variable 𝐾
comes from binomal distribu-
tion:

𝐾 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃).

Instead of writing out the outcomes of individual trials, we
can also write out the number of heads we obtain, essentially
introducing a new random variable 𝐾. For example, such an
equation for obtaining exactly two heads is:

𝑃 𝑟(𝐾 = 2 ∣ 𝜃) = 𝑃𝑟(𝑋1 = 1, 𝑋2 = 1 ∣ 𝜃)
= 𝜃1+1(1 − 𝜃)2−1−1

= 𝜃2(1 − 𝜃)0

= 𝜃2

(3.6)

and for obtaining exactly 1 heads is:

𝑃𝑟(𝐾 = 1|𝜃) = 𝑃𝑟(𝑋1 = 0, 𝑋2 = 1|𝜃) + 𝑃𝑟(𝑋1 = 1, 𝑋2 = 0|𝜃)
= 𝜃1(1 − 𝜃)1 + 𝜃1(1 − 𝜃)1

= 2 × 𝜃1(1 − 𝜃)1

(3.7)

Note that in the Equation 3.7, there are 2 ways in which the
number of heads is 1: 𝑃𝑟(𝑋1 = 0, 𝑋2 = 1|𝜃) or 𝑃𝑟(𝑋1 =
1, 𝑋2 = 0|𝜃). To determine the number of ways to choose 𝑘
items from a set of 𝑛 items, without regard to the order of
selection, we can use the so-called “n choose k” equation:

(𝑛
𝑘) = 𝑛!

𝑘! ⋅ (𝑛 − 𝑘)! (3.8)

Now, we are ready to generalise and establish the equation for
obtaining 𝑘 heads in 𝑛 trials:

𝑃 𝑟(𝐾 = 𝑘|𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘 (3.9)
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This is called the binomial probability distribution. And this
is our likelihood function for the data from the coin tossing
example!

3.1.4 The binomial likelihood function in action

Alright, let us put the binomial likelihood function into prac-
tice. For example, suppose that we perform a coin tossing ex-
periment with 𝑛 trials (coin tosses) and 𝑘 successes (heads).
What is the probability of obtaining 𝑘 = 7 heads when there
are 𝑛 = 10 trials and the probability of success is 𝜃 = 0.7? To
this end, we use the binomial probability density function from
the Equation 3.9, substitute the values, and calculate:

𝑃𝑟(𝑘 = 7|𝑛 = 10, 𝜃 = 0.7) = (10
7 )0.77 × (1 − 0.7)10−7 = 0.27

(3.10) 0 2 4 6 8 10
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0.
20
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30

Outcome
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Figure 3.1: Probability distribution
of all possible outcomes 𝑘 ∈ [0, 10]
when 𝑛 = 10 trials and the probabil-
ity of heads is 𝜃 = 0.7.

Recall from the Table 3.1 that when we keep the probability of
heads fixed, we obtain a valid probability distribution, which is
illustrated in the Figure 3.1. And what happens when instead
we fix the data, for example, 𝑘 = 7, and make the parameter 𝜃
free to vary between 0 and 1? The likelihood function is:

ℒ(𝜃|𝑘 = 7, 𝑛 = 10) = (10
7 )𝜃7(1 − 𝜃)10−7 (3.11)

and its shape can be easily obtained in R using a dbinom func-
tion (Figure 3.2).5

# Define a sequence of theta values from 0 to 1, with a step size of 0.01
thetas = seq(0, 1, by=.01)

# Calculate the likelihood for observing k=7 successes in n=10 trials for each value of theta
liks = dbinom(x=7, size=10, prob=thetas)

# Plot the likelihood function for different values of theta
plot(thetas, # x-axis: values of theta

5Note the striking difference from the Figure 3.1, where the probability
values are discrete and sum up to 1.
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liks, # y-axis: corresponding likelihoods
xlab=bquote(theta), # Label for x-axis
ylab="Likelihood", # Label for y-axis
type="l", # Line plot to show the likelihood curve
bty="l", # Box type for the plot (L-shaped)
#main=bquote("L("*theta*" | k=7, n=10)"), # Main title with LaTeX-style formatting for the likelihood function
xlim=c(0, 1), # Set the x-axis range (theta from 0 to 1)
ylim=c(0, max(liks) + .05) # Set the y-axis range, slightly above the maximum likelihood value

)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
10

0.
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30

θ

Li
ke
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d

Figure 3.2: The binomial likelihood function when 𝑘 = 7 and
𝑛 = 10.

What is the meaning of this curve? In a nutshell, the function
describes how likely different values of 𝜃 are, given the observed
data 𝑘 = 7 heads in 𝑛 = 10 trials. It clearly shows that the
values close to 0.7 are more likely than those close to either 0 or
1. In other words, likelihood functions are plotted to provide a
visual impression of the evidence over the parameter space.

For presentation purposes, likelihood
functions may be standardized by an
arbitrary value (a constant),
typically by their maximum value
which scales its range to be between
0 and 1.

We are now well equipped to tackle the basic tenets of the
likelihood paradigm. Let’s do it!
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3.2 The law of likelihood

Now that we have established the likelihood function, we can
apply it to compare the likelihood of different parameters that
correspond to our specific hypotheses. Essentially, we use the
likelihood function to assess which hypothesis is best supported
by the data. To this end, we introduce the Law of Likelihood.

If hypothesis A implies that the probability that a
random variable X takes the value x is 𝑝𝑎(𝑥), while
hypothesis B implies that the probability is 𝑝𝑏(𝑥),
then the observation 𝑋 = 𝑥 is evidence supporting
A over B if and only if 𝑝𝑎(𝑥) > 𝑝𝑏(𝑥), and the like-
lihood ratio, 𝑝𝑎(𝑥)/𝑝𝑏(𝑥), measures the strength of
that evidence (Hacking, 1965).

Here 𝑝𝑎(𝑥) = 𝑝(𝑥|𝐻𝑎) is the probability of observing 𝑥 given
that hypothesis A is true and 𝑝𝑏(𝑥) = 𝑝(𝑥|𝐻𝑏) is the probabil-
ity of observing 𝑥 given that hypothesis B is true. The ratio of
these conditional probabilities, 𝑝(𝑥|𝐻𝑎)/𝑝(𝑥|𝐻𝑏), is the likeli-
hood ratio.6 In other words, if an event is more probable under
hypothesis A than hypothesis B, then the occurrence of that
event is the evidence supporting A over B. The degree to which
the occurrence of the event supports A over B is quantified by
the ratio of the two probabilities:

Λ(𝜃) = ℒ(𝜃𝑎|𝑋 = 𝑥)
ℒ(𝜃𝑏|𝑋 = 𝑥) = 𝑝(𝑋 = 𝑥|𝜃𝑎)

𝑝(𝑋 = 𝑥|𝜃𝑏)
(3.12)

Simple vs composite hypothesis

The Law of Likelihood is applied in contexts where hy-
potheses are simple, meaning they specify a single value
for each parameter of interest. A composite hypoth-

6The concept of statistical evidence is essentially relative in nature; the
data represent evidence for one hypothesis in relation to another. The
data do not represent evidence for, or against, a single hypothesis. Why
would it be wrong to say that the data represent evidence against 𝐻𝑎
if 𝑝(𝑥|𝐻𝑎) is small? The reason is 𝑝(𝑥|𝐻𝑎), while small, might be
the largest among the hypotheses under consideration, making 𝐻𝑎 the
hypothesis best supported by the data.

22



esis, in contrast, is one that does not specify a single
value for the parameter but instead includes a range or
set of possible values. For example, in a coin-tossing ex-
periment: a simple hypothesis is 𝜃 = 0.5 while a composite
hypothesis is 𝜃 ≥ 0.5 which allows for multiple values of
𝜃. However, this does not mean that likelihood-based rea-
soning is restricted to single-parameter models. Instead, it
means that each hypothesis being compared corresponds
to a specific likelihood function rather than a range
of possible parameter values. In multi-parameter models,
a simple hypothesis fully specifies all parameters. For ex-
ample, a simple hypothesis is 𝜇 = 0 and 𝜎 = 0.5 while a
composite hypothesis is 𝜇 > 0 and 𝜎 = 0.5 since 𝜇 is not
fully specified.

The likelihood ratio directly reflects the strength of the evi-
dence. For the purpose of interpreting and communicating the
strength of evidence, it is useful to divide the continuous scale
of the likelihood ratio into descriptive categories (Table 3.2).
Note that while a likelihood ratio of 8 represents fairly moder-
ate evidence, so does a likelihood ratio of 7.5 or 10 (albeit to a
lesser or greater degree).

Table 3.2: Likelihood ratio interpretation.

Likelihood ratio Evidence strength
1 neutral
1-8 weak
8-32 moderate
32+ strong

For example, given the data from the previous section in the
coin tossing experiment, 𝑘 = 7 and 𝑛 = 10, we have only weak
evidence that the coin is biased (Figure 3.3). The likelihood
ratio between two hypotheses 𝜃𝑎 = 0.7 vs 𝜃𝑏 = 0.5 is:

ℒ(𝜃 = 0.7|𝑘 = 7, 𝑛 = 10)
ℒ(𝜃 = 0.5|𝑘 = 7, 𝑛 = 10) = 2.3.
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Figure 3.3: The standardized likeli-
hood function indicating the ratio be-
tween 𝜃 = 0.5 and 𝜃 = 0.7.
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3.3 Support intervals

Once we have observed the data, can we determine a range
of parameter values that remain plausible at a given level of
support? Within the likelihood framework, one approach is
to construct a support interval, which consists of all parameter
values for which the likelihood exceeds a specified fraction of its
maximum. This interval directly reflects the relative strength
of evidence provided by the data.

A support interval is an interval of parameter values
for which the likelihood remains above a specified
threshold relative to its maximum, indicating the
level of support provided by the data.

For example, the values of 𝜃 that are most consistent with the
data correspond to those near the peak of the likelihood func-
tion. A 1/𝜆 likelihood support interval is then defined as the set
of 𝜃 values for which the likelihood remains above 1/𝜆 times its
maximum value. Formally, we can express the support interval
as:

{all 𝜃 where ℒ(𝜃)
𝑚𝑎𝑥𝜃ℒ(𝜃) ≥ 1

𝜆} = {all 𝜃 where ℒ( ̂𝜃)
ℒ(𝜃) ≤ 𝑘}

(3.13)

In words, the interval is determined by comparing the likeli-
hood at each possible value of the parameter to the maximum
likelihood. In this framework, the support interval doesn’t di-
rectly correspond to the probability of the parameter lying in
the interval, but rather reflects the range of values for which the
data provides reasonable support under the likelihood function.
Any 𝜃 within the 1/𝜆 interval is supported by the data because
the best supported hypothesis, ̂𝜃, is only better supported by
a factor of 𝜆 or less.

To illustrate the implications of a support interval, let’s consider
a concrete example. We revisit the coin-tossing experiment
(i.e., a binomial model) and examine two scenarios: one with
10 trials and another with 10 times as many. In both cases,
the observed proportion of heads is the same, with 𝑘1=7

𝑛1=10 in the
first scenario and 𝑘2=70

𝑛2=100 in the second.
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# Create a sequence of possible theta values from 0 to 1 with a step size of 0.01
thetas <- seq(0, 1, .01)

# Define the number of heads and tosses for the first scenario
n_heads <- 7
n_tosses <- 10

# Calculate the likelihood for each theta given the observed number of heads (n_heads) and tosses (n_tosses)
lik <- dbinom(n_heads, size=n_tosses, prob=thetas)

# Scale the likelihood by dividing each value by the sum of all likelihoods
lik <- lik / max(lik)

# Set up the plot with an empty frame, specify limits and labels
plot(x=.5, # Initial x position (not used here as it's an empty plot)

type='n', # Type 'n' creates an empty plot
xlim=c(0, 1), # x-axis limits (theta from 0 to 1)
ylim=c(0, 1.3), # y-axis limits for the scaled likelihood
bty="l", # Box type 'L' for the plot border
#main=bquote("L("*theta*" | k=7, n=10) vs L("*theta*" | k=70, n=100)"), # Main title with LaTeX formatting
xlab=bquote(theta), # x-axis label
ylab='Normalised likelihood' # y-axis label

)
# Add a custom x-axis label at theta = 0.5
axis(1, at=.5, labels=paste(.5))

# Plot the first likelihood curve (scaled likelihood for n_tosses = 10)
lines(thetas, lik, type='l', lty=5) # Adds a line plot for the first likelihood

# Define the second scenario with more tosses (10 times the original)
n_tosses_more <- n_tosses * 10
n_heads_more <- n_heads * 10

# Calculate the likelihood for the second scenario (scaled likelihood for n_tosses = 100)
lik_100 <- dbinom(n_heads_more, size=n_tosses_more, prob=thetas)

# Scale the likelihood for the second scenario
lik_100 <- lik_100 / max(lik_100)

# Plot the second likelihood curve (scaled likelihood for n_tosses = 100)
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lines(thetas, lik_100, type='l', lty=3) # Adds a dashed line for the second likelihood

# Mark specific points on the plots for comparison at theta = 0.5 and theta = 0.7
points(.5, lik[51], pch=21, cex=1.2) # Point for theta = 0.5 in the first plot
points(.5, lik_100[51], pch=21, cex=1.2) # Point for theta = 0.5 in the second plot
points(.7, lik[71], col='black', pch=19, cex=1.2) # Point for theta = 0.7 in the first plot

# Calculate the likelihood ratios for the two scenarios at theta = 0.7 vs theta = 0.5
lik_ratio1 <- round(lik[71] / lik[51], 1) # Ratio for the first plot (n_tosses = 10)
lik_ratio2 <- round(lik_100[71] / lik_100[51], 1) # Ratio for the second plot (n_tosses = 100)

# Annotate the plot with the likelihood ratios
t1_x <- 0.4
t1_y <- 0.7
t2_x <- 0.3
t2_y <- 0.4
text(t1_x, t1_y, paste("LR1 = ", lik_ratio1), adj=0, pos=2, cex=.9, col='grey') # Annotation for the first plot
text(t2_x, t2_y, paste("LR2 = ", lik_ratio2), adj=0, pos=2, cex=.9, col='grey') # Annotation for the second plot
segments(t1_x, t1_y, 0.5, lik[51], col='grey')
segments(t2_x, t2_y, 0.5, lik_100[51], col='grey')

# Add a horizontal line at the 1/8 likelihood level
abline(h=1/8, col="black", lty=1)
text(0.1, 1/8, "1/8 bound", pos=3, col="black")

legend("topright", # Position of the legend
legend = c("n1", "n2"), # Labels
col = c("black", "black"), # Colors of the lines
lty = c(5, 3), # Line types
lwd = 2,
bty = "n"
)
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Figure 3.4: The standardized likelihood function for a binomial
model with two different sample sizes 𝑛1 = 10 trials
and 𝑛2 = 100 trials.

3.4 Probability of obtaining weak and
misleading evidence

Evidence is considered misleading if it strongly sup-
ports the wrong hypothesis while weak evidence
refers to a situation where the evidence does not
clearly favor either hypothesis.

Once the data are collected, the strength of the evidence is
assessed using the likelihood ratio, which quantifies whether
the evidence is weak or strong. Weak evidence is merely unin-
formative and does not contribute meaningfully to conclusions.
To prevent such outcomes, we can evaluate whether a given
study design is likely to produce weak evidence. Similarly, we
can assess whether a study design might generate misleading
evidence. Unlike weak evidence, misleading evidence is par-
ticularly problematic because it strongly supports the wrong
hypothesis, leading to incorrect conclusions.7

7It is critical to distinguish between (a) the probability of observing mis-
leading evidence (future) vs (b) the probability that the observed evi-
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The probability of observing weak evidence favoring either hy-
pothesis 𝜃0 or 𝜃1 when 𝜃0 is the correct hypothesis depends on
the strength of the evidence 𝜆 and the sample size 𝑛:

𝑝(1/𝜆 < ℒ𝑛(𝜃1)
ℒ𝑛(𝜃0) < 𝜆) = 𝑊(𝑛, 𝜆). (3.14)

Likewise, the probability of observing misleading evidence for
𝜃1 over 𝜃0 depends on the strength of the evidence 𝜆 and the
sample size 𝑛:

𝑝(ℒ𝑛(𝜃1)
ℒ𝑛(𝜃0) ≥ 𝜆) = 𝑀(𝑛, 𝜆). (3.15)

To better understand these principles, let us simulate some data.
To this end, we will use a custom written functions in R. The
Listing 3.1 and Listing 3.2 include the functions to calculate
the probability of weak and misleading evidence, respectively.
The outcome of the simulation is plotted in the Figure 3.5.
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Figure 3.5: The probability of observing weak and misleading
evidence in a binomial model for a given strength
of evidence (8 vs 32) and sample size.

The outcome of the simulation is quite striking! With increas-
ing sample size, the probability of observing weak evidence is

dence is misleading (past).
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clearly decreasing. Second, the frequency with which mislead-
ing evidence is observed is, in general, low. In fact, for any
fixed sample size and any pair of probability distributions, the
probability of observing misleading evidence of strength 𝜆 or
greater is always less than or equal to 1/𝜆.

The universal bound

One nice feature of likelihood ratios is that they are sel-
dom misleading. The probability of observing misleading
evidence of 𝜆-strength is always bounded by 1/𝜆, the so-
called universal bound.
Mathematically, if both 𝑓(𝑥) and 𝑔(𝑥) are probability den-
sity functions and 𝑥 is distributed according to 𝑓(𝑥) then:

𝑝𝑓( 𝑔(𝑥)
𝑓(𝑥) ≥ 𝜆) ≤ 1

𝜆

3.4.1 Sequential designs

The universal bound applies to both fixed sample size designs
and sequential study designs. In a sequential study, the prob-
ability of observing misleading evidence does increase with the
number of looks at the data. However, multiple looks at the
data do not affect the likelihood function, and the amount by
which misleading evidence increases shrinks to zero as the sam-
ple size grows. As a result, the overall probability can remain
bounded and is less than 1/𝜆. Thus, an experimenter who plans
to examine the data with each new observation, stopping only
when the data support the alternative over the null, will be frus-
trated with probability at least 1 − 1/𝜆. Practically speaking,
one will be frustrated quite often. This does not seem obvious,
so let us show the principle using simulations.

The universal bound in sequntial designs

The probability of observing misleading evidence in a fixed
sample size study is less than the corresponding proba-
bility in a sequential study, but both are less than 1/𝜆.
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Mathematically, if both 𝑓(𝑥) and 𝑔(𝑥) are probability den-
sity functions and 𝑥 is distributed according to 𝑓(𝑥) then:

𝑝𝑓( 𝑔(𝑥𝑛)
𝑓(𝑥𝑛) ≥ 𝜆; for any 𝑛 = 1, 2, ...) ≤ 1

𝜆
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Figure 3.6: Likelihood ratio in a sequential design. Each grey
line indicates a single simulated study.

The Figure 3.6 depicts a sequential design under simulated re-
peated hypothesis testing with each new observation. The de-
sign sets the likelihood ratio at the level 𝜆 = 20, and tests
between two hypotheses 𝜃0 = 0.5 and 𝜃1 = 0.7. The data
speak for themselves. The probability of observing misleading
evidence of 𝜆-strength or greater remains bounded by 1/𝜆 for
any number of looks under very general conditions. Indeed, the
simulation shows that the probability of observing misleading
evidence is 0.044, and hence below the bound of 1/𝜆 = 1/20.
It is also clear that as the amount of data grows, the strength
of evidence against the alternative hypothesis increase.

Tip

Note that what we did here is we repeatedly (every sam-
ple) peeked at data to check the evidence strength between
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two pre-specified (a priori) single-valued hypotheses (null
and alternative). We did not look for the evidence be-
tween a null and any alternative hypothesis. This is not
a subtle distinction. Do you know why?

Let’s explore what happens when we examine the data after
every sample and treat the parameter value with the maximum
likelihood as our alternative hypothesis. In other words, with
each new data point, we update our alternative hypothesis to
reflect the observed results, effectively selecting the hypothesis
that best fits the data at that particular moment.
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Figure 3.7: Likelihood ratio in a sequential design, where the
alternative hypothesis is continuously updated to
match the value of maximum likelihood.

We clearly observe a different pattern. As the amount of data
grows, the strength of evidence against the alternative hypoth-
esis remains stable. Moreover, the simulation shows that the
probability of observing misleading evidence is 0.138, and hence
above the bound of 1/𝜆 = 1/20.
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Warning

Switching hypotheses as we collect data increases the prob-
ability of being misled more often than we would like. In
other words, the probability of observing misleading ev-
idence of 𝜆-strength or greater is not guaranteed to be
bounded by 1/𝜆 threshold.

3.5 Is the observed evidence misleading?

We have established that once the data are collected, the
strength of the evidence is determined by the likelihood ratio.
The probability of obtaining another set of data that might be
misleading is no longer relevant; the question of what could
have happened becomes insignificant. What matters is whether
the observed data are misleading or not. Unfortunately, we
will never be certain if the observed result is misleading – sorry
to disappoint you! However, it is sometimes possible to assess
the probability that the observed results could be misleading.
So, how should we approach this challenge?

Let us consider a hypothethical example based on a medical
test T for a disease D. An observed positive test for the dis-
ease D is wrong if and only if the patient does not have the
disease. Knowing the disease prevalence in the general pop-
ulation give us a clue whether the patient has a disease or
not. Let us assume that the prevalence of the disease is 5%
in the general population, thus 𝑃(𝐷+) = 0.05 and by sym-
metry 𝑃(𝐷−) = 1 − 0.05. Given the parameters of a spe-
cific test such as its sensitivity (true positives) expressed as
𝑃(𝑇 + |𝐷+) = .94 and specificity (true negatives) expressed as
𝑃(𝑇 + |𝐷−) = .02, we can compute the strength of evidence,
𝜆 = 𝑃(𝑇 + |𝐷+)/𝑃 (𝑇 + |𝐷−) = .94/.02 = 49. So we have
𝜆 = 49 and prior probability of the disease 𝑃(𝐷+) = 0.05.
What remains is to compute the probability of the patient to
have the disease given the positive test, which is 𝑃(𝐷 + |𝑇 +).
We can compute that probability using so called Bayes theorem.
We will explain the theorem in the next chapter, but for now
simply realize based on daily experience that having known the

32



test came out positive, we would change our belief about hav-
ing the disease. If the test is positive, the belief would increase.
Otherwise, it would decrease. In other words, having obtained
the test results, we “scale” our beliefs about the odds of having
the disease (i.e., the chance of having the disease vs not-having
the disease). This intuitive reasoning can be expressed as:

𝜆 × prior odds = posterior odds (3.16)

Expressed more formally:

𝜆 × 𝑃(𝐷+)
1 − 𝑃(𝐷+) = 𝑃(𝐷 + |𝑇 +)

1 − 𝑃(𝐷 + |𝑇 +) (3.17)

The left-hand side is our beliefs about the disease before seeing
the result and scaled by the evidence. The right-hand side is
our updated beliefs due to evidence.

If we re-arrange the Equation 3.17, we get:

𝑃(𝐷 + |𝑇 +) =[1 + 1 − 𝑃(𝐷+)
𝜆 × 𝑃(𝐷+)]

−1

(3.18)

The probability of the evidence being misleading

𝑃 (𝜃0|𝑑𝑎𝑡𝑎) =[1 + 𝜆 × (1 − 𝑃(𝜃0))
𝑃 (𝜃0) ]

−1

Let us plot how the probability of misleading evidence changes
as a function of prior probability of the hypothesis to be false.

In short, the probability of misleading evidence depends on
the prior odds of our hypotheses. This answers the question
why the same statistical evidence may convince one researcher
but not the other. This is because they may have different
prior probabilities for the hypotheses depending on their own
experience and beliefs.

You strongly believe that a coin is
fair. Now consider a scenario where
the coin is tossed, and for every 8
heads, there is 1 tail (LR=8). How
strongly do you belive now that the
coin is fair?
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Figure 3.8: Probability of observed evidence to be misleading
as a function of likelihood ratio.

Important

The likelihood ratio quantifies statistical evidence that
uniformly modify prior beliefs:

𝑝(𝜃1|𝑥)
𝑝(𝜃0|𝑥) = 𝜆 × 𝑝(𝜃1)

𝑝(𝜃0) (3.19)

where 𝜆 = 𝑝(𝑥|𝜃1)/𝑝(𝑥|𝜃0) is the likelihood ratio,
𝑝(𝜃1)/𝑝(𝜃0) is prior probability ratio, and 𝑝(𝜃1|𝑥)/𝑝(𝜃0|𝑥)
is the posterior probability ratio.

3.6 Summary: Evidential metrics

The foundation of statistical inference is the interpretation of
data as evidence. There are three essential quantities for as-
sessing and interpreting the strength of statistical evidence in
data (Table 3.3).
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Table 3.3: Evidential metric.

Metric What it measures
1 Likelihood ratio

(LR)
The strength of the evidence

2 Pr(LR > � | H0) or
P(LR < 1/� | H1)

The probability that a particular
study design will generate
misleading evidence

3 P(H0 | LR = �) or
P(H1 | LR = 1/�)

The probability that the observed
evidence is misleading

3.7 Exercises

1) Modify the value of the alternative hypothesis to check
how it affects the probability of misleading and weak ev-
idence. How does it change when the difference between
theta 1 and 0 grows?

2) Modify the code and check how the probability of mis-
leading evidence change in a sequential design when data
are inspected after every 10th observations. Does the
probability increase or decrease?

3.8 Relation to Open Science

The likelihood paradigm (Royall, 1997) is highly relevant for
open science in several key ways:

1. Transparent Evidence Quantification. The likelihood
paradigm emphasizes direct comparison of evidence via
likelihood ratios (rather than relying on p-values). Open
science promotes transparency in statistical inference,
and likelihood-based methods align well with this by
offering a clear and interpretable measure of evidence.

2. Reproducibility and Robustness. The likelihood ap-
proach encourages reporting full likelihood functions,
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which allows other researchers to reanalyze data, incor-
porate new data, and update inferences. This is crucial
for reproducibility, a core principle of open science.

3. Avoiding Dichotomous Thinking. Classical hypothesis
testing often leads to binary “significant vs. not signif-
icant” thinking, which can be misleading. Likelihood ra-
tios provide graded evidence strength, which fits well with
open science’s push for nuanced, data-driven interpreta-
tions rather than rigid thresholds.

4. Supports Bayesian and Frequentist Paradigms. The no-
tion of likelihood is present in both bayesian and frequen-
tist frameworks. Proper understanding of the likelihood
is necessary for the proper understanding of the other
approaches. Hence, supporting rigourous research.

5. Combatting P-Hacking and Publication Bias. Since likeli-
hood methods don’t rely on arbitrary significance thresh-
olds, they reduce incentives for p-hacking and selective
reporting, which are major concerns in open science.
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Listing 3.1 Function written in R to calculate the probability
of observing weak evidence in a binomial model.

get_p_weak <- function(
nobs = 14, # Number of observations (sample size)
k = 32, # Likelihood ratio threshold for weak evidence
theta1 = 0.8, # Alternative hypothesis parameter
theta0 = 0.5, # Null hypothesis parameter
nsim = 1e+2 # Number of simulations
){

# Simulate data under the null hypothesis
dat <- rbinom(n=nsim, size=nobs, prob=theta0)

# Compute likelihood of observed data under the alternative hypothesis
lik1 <- dbinom(x=dat, size=nobs, prob=theta1)

# Compute likelihood of observed data under the null hypothesis
lik0 <- dbinom(x=dat, size=nobs, prob=theta0)

# Compute the likelihood ratio (LR)
LR <- lik1 / lik0

# Calculate the proportion of cases
# where the likelihood ratio is between 1/k and k
# This represents the probability of weak evidence
w <- sum(1/k < LR & LR < k) / nsim

# Return the probability of weak evidence
return(w)

}
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Listing 3.2 Function written in R to calculate the probability
of observing misleading evidence in a binomial model.

get_p_misleading <- function(
nobs = 14, # Number of observations (sample size)
k = 8, # Likelihood ratio threshold for misleading evidence
theta1 = 0.7, # Alternative hypothesis parameter
theta0 = 0.5, # Null hypothesis parameter
nsim = 1e+2 # Number of simulations
){

# Simulate data under the null hypothesis
dat <- rbinom(n=nsim, size=nobs, prob=theta0)

# Compute likelihood of observed data under the alternative hypothesis
lik1 <- dbinom(x=dat, size=nobs, prob=theta1)

# Compute likelihood of observed data under the null hypothesis
lik0 <- dbinom(x=dat, size=nobs, prob=theta0)

# Compute the likelihood ratio (LR)
LR <- lik1 / lik0

# Calculate the proportion of cases where LR exceeds the threshold 'k'
# This represents the probability of misleading evidence
m <- sum(LR >= k) / nsim

# Return the probability of misleading evidence
return(m)

}
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4 The Bayesian paradigm

In the previous chapter, we established how to evaluate evi-
dence from the observed data. Once we have seen the data, the
next question arises: “What should we believe?” This question
moves beyond simple analysis and asks how we can incorporate
the evidence we’ve gathered into our knowledge. Bayesian in-
ference provides a powerful framework for answering this by
allowing us to continuously refine our knowledge as new infor-
mation becomes available.

At its core, Bayesian inference begins with the concept of the
prior – our initial set of beliefs before encountering data. As
we observe new information, we use the likelihood to measure
how probable the observed data are under different assump-
tions. By applying Bayes’ theorem, we use the prior and
likelihood combined to form the posterior – the updated set of
beliefs. Essentially, Bayesian inference offers a systematic ap-
proach to learning from data, helping us navigate through un-
certainty by constantly adjusting our predictions based on the
latest evidence. As beautifully put by John Kruschke Bayesian
inference is the re-allocation of credibility across possibilities.
Let’s dive in to unpack it!

4.1 Conditional probability

At the heart of Bayesian inference lies the notion of condi-
tional probability. To form an intuitive understanding of
the concept, consider the following two scenarios. In one sce-
nario, you randomly pick a person in a supermarket. What’s
the probability that they own a house? In the second scenario,
you pick a person in a supermarket but are told this person is a
student. What’s the probability that this person owns a house?
In the former, you consider everyone (i.e., population of a city).
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In the latter, you only consider the subset of students, which
changes the probability of owning a house based on the extra
information. In other words, the new information about the
person being a student changes your belief about them owning
a house.1

4.1.1 Elementary, yet powerful ideas of probability
theory

A probabilistic model is a mathematical description
of an uncertain situation.

We have already formalised and used a probabilistic model in
the previous chapter. Now, we provide a more detailed descrip-
tion of what a probabilistic model entails.

Creating a probabilistic model involves two steps:

1) describing possible outcomes (sample space),

2) describing our beliefs about the likelihood of possible out-
comes (probability law).

Yes, this it – the Figure 4.1 depicts the main ingredients of a
probabilistic model.

Figure 4.1: Ingridients of a probabilistic model. From Bert-
sekas and Tsitsiklis (2000) used under terms of copy-
right for instructional purposes.

1Another example: A motion sensor detects movement in a room. How
likely is it that the movement corresponds to a person rather than an
animal?
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Sample space is a set of all possible outcomes Ω. The elements
of that set are mutually exclusive and collectively exhausting.
Sets can be continuous or discrete / finite, and so do sample
spaces. For example, flipping a single coin results in one of
two possible outcomes: heads or tails up. Together, these two
outcomes exhaust all possibilities and are mutually exclusive (it
is either heads or tails, never both at the same time). Moreover,
it is a discrete / finite set. When we toss a coin and observe
an outcome, an event has occured. An event is a subset of a
sample space. For example, an event 𝐴 is a coin that landed
heads up while an event 𝐵 is a coin that landed tails up.2 We
may ask: what is the probability of a coin landing heads up?
To answer the question, we need to specify the probability
law that assigns probabilities to events. These probabilities3

must be non-negative, i.e., 𝑃(𝐴) ≥ 0, follow the additivity rule:
if 𝐴 and 𝐵 are two disjoint events, then the probability that
one of them happens is their sum 𝑃(𝑎) + 𝑃(𝐵), and sum up
to 1, i.e., 𝑃(Ω) = 1. For example, the probability of a coin
landing heads up is 𝑃(𝐴) = .4 while the probability of a coin
landing tails up is 𝑃 (𝐵) = 1 − 𝑃(𝐴). We have just created a
valid probabilistic model .

Discrete Uniform Probability Law

If the sample space consists of 𝑛 possible outcomes which
are equally likely (i.e., all single-element events have
the same probability), then the probability of any event
𝑃𝑟(𝐴) is given by:

𝑃𝑟(𝐴) = number of elements of 𝐴
𝑛

2In theory, we may also specify an event that corresponds to a coin landing
on any side. But this model would not be very practical, as the same
event would always occur.

3These are the three probability axioms:
1. Non-negativity
2. Additivity
3. Normalisation.
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4.1.2 Using new information to revise a probabilistic
model

Let us consider the following probabilistic model depicted in the
Figure 4.2. There are 12 equally likely outcomes. Hence, their
individual probabilities are 1

12 each. We focus on two events
(two subsets of the sample space) such that an event 𝐴 has 5
elements so that its probability is 𝑃(𝐴) = 5

12 , and the event 𝐵
that has 6 elements so that its probability is 𝑃(𝐵) = 6

12 .

(a) Probabilistic model with two
events A and B.

(b) Revising the model based on
partial information that the
event B occurred.

Figure 4.2: Illustration of conditional probability. Based on
Bertsekas and Tsitsiklis (2000) used under terms
of copyright for instructional purposes.

Conditional probability when all
outcomes are equally likely is given
by:

𝑃(𝐴|𝐵) = number of elements of 𝐴 ∩ 𝐵
number of elements of 𝐵

Suppose now, that someone told you that an event 𝐵 has oc-
curred. How should the model change? First, those outcomes
that are outside the event 𝐵 are no longer possible. We can
eliminate them or assign 0 probability to them. Second, we are
told that one of the outcome of 𝐵 has occurred. The individual
probabilities of these outcomes did not change – they are still
all equally likely. Hence, the probability of each outcome of an
event 𝐵 is 1

6 . And the probability of an event 𝐵 is 6
6 so 1. Well,

we were told that the event 𝐵 has occurred. We denote this
situation as 𝑃(𝐵|𝐵) = 1. But what about the probability of an
event 𝐴? Well, there are two possible outcomes of an event 𝐴
that are also in 𝐵. Hence, the conditional probability of 𝐴 given
that 𝐵 occurred is 𝑃(𝐴|𝐵) = 2

6 . Once we are told that an event
𝐵 occurred, the probability of an event 𝐴 has changed from 5

12
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to 1
3 . Note that what happened is that we simply changed the

relevant sample space from Ω to 𝐵. The probability of individ-
ual outcomes of 𝐴 has not changed 𝑃(𝐴) = 1

6 + 1
6 .

How shall we express the reasoning in a formula. Given the
total probability assigned to event 𝐵, we want to determine
what fraction of this probability 𝑃(𝐴 ∩ 𝐵) is assigned to the
outcomes where event 𝐴 also occurs. As a result, conditional
probability 𝑃(𝐴|𝐵) provides us with a way to reason about the
outcome of an experiment based on new information.

Conditional probability

𝑃 (𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) when 𝑃(𝐵) > 0

In words, out of the total probability of the elements of
𝐵, 𝑃(𝐴 ∩ 𝐵) is the fraction that is assigned to possible
outcomes that also belong to 𝐴.

4.1.2.1 Example: Spam filter

Figure 4.3: Sequential description of the sample space for the
spam detection problem.

Conditional probabilities are used to revise a probabilistic
model when we obtain new information. But we can also use
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conditional probabilities to build a multi-stage probabilistic
model. Let us consider an example that involves the detection
of a spam email. Let 𝐴 and 𝐵 be the events

• 𝐴 = {a spam message is received},
• 𝐵 = {a spam filter registers a spam message},

and their complements are

• 𝐴𝑐 = {a regular message is received},
• 𝐵𝑐 = {a spam filter does not register a spam message}.

The given probabilities are recorded along the corresponding
branches of the tree describing the sample space, as shown in
the Figure 4.3. Each event of interest corresponds to a leaf
of the tree and its probability is equal to the product of the
probabilities associated with the branches in a path from the
root to the corresponding leaf.

A message is sent to an inbox. It is either a spam, i.e., event
𝐴 occurs, or a regular message, i.e., event 𝐴 does not occur.
The probabilities of these events are as follows 𝑃(𝐴) = 0.05
and 𝑃(𝐴𝑐) = 0.95, respectively. Then a spam filter registers
the message as a spam, i.e., event 𝐵 occurs. Alternatively, the
filter does not register the spam, i.e., event 𝐵 does not occur.
How good is the filter? Its specs are essentially formulated as
conditional probabilities, e.g., the sensitivity of the filter (the
filter correctly identifies a spam message) is 𝑃(𝐵|𝐴) while the
specificity of the filter (the filter correctly identifies a regular
message) is 𝑃(𝐵𝑐|𝐴𝑐). As a result, we have various scenarios.
For example, it is possible that a spam message is received but
the filter did not register it (i.e., the so-called “miss”). This
case would be denoted as 𝑃(𝐴 ∩ 𝐵𝑐). Conversely, a regular
message is received but the filter does register it as a spam (i.e.,
the so-called false alarm). This case is denoted as 𝑃(𝐴𝑐 ∩ 𝐵).
Given the assigned probabilities depicted in the figure, let us,
for example, calculate the probability of receiving a spam mes-
sage that is correctly registered:

𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴) × 𝑃(𝐵|𝐴) = 0.05 × 0.99 = 0.0495 (4.1)
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Likewise, let us calculate the probability of registering a mes-
sage by the filter as a spam:

𝑃(𝐵) = 𝑃(𝐴 ∩ 𝐵) + 𝑃 (𝐴𝑐 ∩ 𝐵) = 0.05 × 0.99 + 0.95 × 0.10 = 0.1445
(4.2)

And now, perhaps the most interesting case. Suppose that the
filter registers something. What is the probability that it is a
spam?

𝑃 (𝐴|𝐵) = 𝑃 (𝐴 ∩ 𝐵)
𝑃(𝐵) = 𝑃(𝐴) × 𝑃(𝐵|𝐴)

𝑃(𝐵)
= 0.05 × 0.99

0.1445 = 0.34
(4.3)

Even though we have a very good spam filter (99% reliability),
the probability of a spam when flagged by the filter is somehow
low.

The answer to the problem above is an example of Bayesian
inference that has the following structure of reasoning:

1) we first specify our inital beliefs about each scenario of a
problem at hand 𝑃 (𝐴𝑖) (e.g., the probability of a spam
message being received),

2) we consult our model of the world 𝑃(𝐵|𝐴𝑖) which de-
scribes the probability of an event 𝐵 under each scenario
𝐴𝑖 (e.g., the probability of a filter to register a spam when
the message is indeed a spam)

𝐴𝑖
model⟶

𝑃(𝐵|𝐴𝑖)
𝐵, (4.4)

3) then, if we obsere that the event 𝐵 actually occurs, we
revise our inial beliefs about the probability of each sce-
nario 𝐴𝑖. In other words, knowing that 𝐵 occurred, we
are willing to say which scenario is more or less likely:

𝐵 inference⟶
𝑃(𝐴𝑖|𝐵)

𝐴𝑖. (4.5)

To ensure that the reasoning is valid, we use the Bayes’ rule.
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Bayes’ rule

Let 𝐴1, 𝐴2, … , 𝐴𝑛 be disjoint events that form a partition
of the sample space, and assume that 𝑃(𝐴𝑖) > 0, for all 𝑖.
Then, for any event 𝐵 such that 𝑃 (𝐵) > 0, we have:

𝑃(𝐴𝑖|𝐵) = 𝑃(𝐴𝑖)𝑃 (𝐵|𝐴𝑖)
𝑃 (𝐵)

= 𝑃(𝐴𝑖)𝑃 (𝐵|𝐴𝑖)
𝑃 (𝐴1)𝑃 (𝐵|𝐴2) + … + 𝑃(𝐴𝑛)𝑃 (𝐵|𝐴𝑛)

Total Probability Theorem

Let 𝐴1, … , 𝐴𝑛 be disjoint events that form a partition of
the sample space (each possible outcome is included in
one and only one of the events 𝐴1, … , 𝐴𝑛) and assume
that 𝑃(𝐴𝑖) > 0, for all 𝑖 = 1, … , 𝑛. Then, for any event
𝐵, we have:

𝑃(𝐵) = 𝑃(𝐴1 ∩ 𝐵) + ⋯ + 𝑃(𝐴𝑛 ∩ 𝐵)
= 𝑃 (𝐴1)𝑃 (𝐵|𝐴1) + ⋯ + 𝑃(𝐴𝑛)𝑃 (𝐵|𝐴𝑛).

4.2 Bayesian data analysis

You may now wonder: how to apply Bayes’ rule to data anal-
ysis? Let us rewrite the expression 1 in terms of data and
parameters:

𝑝(Θ|𝑦)⏟
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

= ( 𝑝(𝑦|Θ)⏟
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

× 𝑝(Θ)⏟
𝑝𝑟𝑖𝑜𝑟

) / 𝑝(𝑦)⏟
𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

(4.6)

Given a vector of data 𝑦, Bayes’ rule allows us to work out the
posterior distributions of the parameters of interest, which we
can represent as the vector of parameters Θ. What is different
here from the previous sections is that Bayes’ rule is written in
terms of probability distributions 𝑝(⋅) and not discrete events.
More specifically:
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• 𝑝(Θ) is the probability distribution of the parameter(s)
of our model that reflects our knowledge before we col-
lect data. We either know or make plausible assumptions
about the values of these paramters. Crucially, those as-
sumptions are embodied in the type of a probability dis-
tribution we believe reflects the structure of our problem
at hand.

• 𝑝(𝑦|Θ) is the likelihood. Having collected data, 𝑦, we can
now examine the probability of having obtained a partic-
ular outcome in light of the prior values of the parameters
Θ.4

• 𝑝(Θ|𝑦) is the posterior probability of the parameters, Θ,
after seeing the data that is the result of the application
of Bayes’ rule.

• 𝑝(𝑦) represents the overall probability of the data, irre-
spective of the values of the parameters. For now all
we need to know is that it serves as a normalizing factor
that assures 𝑝(Θ|𝑦) is scaled to the range 0-1 to be a valid
probability distribution.

Together, to arrive at updated knowledge about the parame-
ter values of our model representing the problem at hand, we
combine our prior knowledge about the parameters with the
obtained data. T see how this works in practice, we refer to
our example from the previous chapter – flipping a coin two
times.

4.2.1 Likelihood

What is the likelihood function of the generative process under-
lying the outcome of a double coin flip? Last time, we estab-
lished that the outcome of our experiment follows the binomial
probability distribution. That is, the number of heads 𝑘 in

4It might appear confusing to see that the probability 𝑃(𝑦|Θ) is called
the “likelihood,” whereas in the previous chapter we used “likelihood”
to refer to ℒ(Θ|𝑦). Those quantities are the same and differ only in
what is considered to be given and what is considered to be variable.
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𝑛 tosses of a coin are described with the binomial likelihood
function:

𝑝(𝐾 = 𝑘|𝑛, 𝜃) = (𝑛
𝑘)𝜃𝑘(1 − 𝜃)𝑛−𝑘 (4.7)

In the experiment that we carry out, we obtain two heads.
Hence, the only variable in the equation that we do not know
is 𝜃:

𝑝(𝐾 = 2|𝑛 = 2, 𝜃) = (2
2)𝜃2(1 − 𝜃)2−2 (4.8)

The above function is now a continuous function of the 𝜃, values
of which range from 0 to 1 as depicted in the Figure 4.4. Our
main goal is to find out, using the Bayes’ rule, the posterior
distribution of 𝜃 given the observed data: 𝑝(𝜃|𝑛, 𝑘). To this
end, we need to specify our prior beliefs about the values of
𝜃.
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Figure 4.4: The binomial likelihood function when two flips of
a coin yield two heads.

4.2.2 Priors

To select a prior for 𝜃 in the binomial distribution, we must
assume that 𝜃 is a random variable with a probability distribu-
tion whose support lies within the interval [0, 1], the range over
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which 𝜃 can vary. The beta distribution, which is a probability
density function for a continuous random variable, is commonly
used as prior for parameters representing probabilities.

𝑝(𝜃|𝑎, 𝑏) = 1
𝐵(𝑎, 𝑏)𝜃𝑎−1(1 − 𝜃)𝑏−1 (4.9)

The term 𝐵(𝑎, 𝑏) is a normalizing constant to ensure that the
area under the curve sums to one. We will ignore it for now.
The beta distribution’s parameters 𝑎 and 𝑏 can be interpreted
as expressing our prior beliefs about the probability of success
where 𝑎 represents the number of “successes” (i.e., number of
heads), and 𝑏 the number of “failures” (i.e., number of tails).
Possible shapes of the beta distribution are illustrated in the
Figure 4.5.
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Figure 4.5: Examples of beta distributions.

What values of 𝑎 and 𝑏 shall we choose? Let’s say we have no
idea how a coin may behave and, hence, choose 𝑎 = 1 and 𝑏 = 1.
We are therefore ignorant:

𝑝(𝜃) = 1
𝐵(1, 1)𝜃1−1(1 − 𝜃)1−1 = 1

𝐵(1, 1) = 1 (4.10)
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4.2.3 Posterior

Having specified the likelihood and the prior, we will now use
Bayes’ rule to calculate 𝑝(𝜃|𝑛, 𝑘). To this end, we simply replace
the likelihood and the prior we defined above:

𝑝(𝜃|𝑘 = 2, 𝑛 = 2) =
[(2

2)𝜃2(1 − 𝜃)2−2]×[ 1
𝐵(1,1)𝜃1−1(1 − 𝜃)1−1]

𝑝(𝑘 = 2)
(4.11)

If we ignore the constant terms, we can simplify and obtain the
equation:

𝑝(𝜃|𝑘 = 2, 𝑛 = 2) ∝ 𝜃2(1 − 𝜃)2−2 × 𝜃1−1(1 − 𝜃)1−1 (4.12)

Resolving the right-hand side now simply involves adding up
the exponents! In this example, computing the posterior re-
ally does boil down to this simple addition operation on the
exponents.

𝑝(𝜃|𝑘 = 2, 𝑛 = 2) ∝ 𝜃2(1 − 𝜃)0 = 𝜃2 (4.13)

In our special case, when the prior was 1, we see that the poste-
rior is proportional to the likelihood (Figure 4.6). But we may
ask what if we had chosen a different prior.

Given some data and a likelihood function, the tighter the prior,
the greater the extent to which the posterior orients itself to-
wards the prior (Figure 4.7). In general, we can say the follow-
ing about the likelihood-prior-posterior relationship:

• The posterior distribution of a parameter is a compromise
between the prior and the likelihood.

• For a given set of data, the greater the certainty in the
prior, the more heavily will the posterior be influenced by
the prior mean.

• Conversely, for a given set of data, the greater the uncer-
tainty in the prior, the more heavily will the posterior be
influenced by the likelihood.

Simply put: the posterior distribution is a compromise between
the prior and the likelihood.

The fact that the posterior
distribution is a compromise
between the prior and the likelihood
has important implications.
Whenever we do a Bayesian analysis,
it is good practice to check whether
the parameter of interest is sensitive
to the prior specification. Such a
robustness check is called a
sensitivity analysis.
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Figure 4.6: Prior, likelihood, and posterior.
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Figure 4.7: The posterior distribution is a compromise between
the prior and the likelihood.
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4.3 Accumulating evidence over time

Bayes’ rule provides a powerful framework for updating our
beliefs as new evidence are collected. In the context of data
analysis, we’ve shown how to apply this rule effectively. By
adjusting the prior probabilities of model parameters with the
likelihood of new data, we’ve been able to reduce uncertainty
and refine our understanding of the most likely parameter val-
ues. This approach is particularly valuable in situations where
we have limited information or when we need to continuously
adjust our predictions as new observations are made. Refer-
ring to our coin tossing example, we can now ask: what would
happen if we had collected more coin flips?
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Figure 4.8: Narrowing the posterior with each data point.

Let us simulate. We are assuming flat prior as before 𝑎 = 1
and 𝑏 = 1. Our starting point is the same data 𝑘 = 2 heads
in 𝑛 = 2 tosses. But we now continue tossing the coin until
𝑛 = 100 trials. The results are illustrated in the Figure 4.8.
As we incrementally gain information, the posterior becomes
narrower, essentially reflecting our increased confidence in the
best parameter values for predicting the data. This avantage
is still there even when our prior we start with is biased. This
scenario is illustrated in the Figure 4.9. Even if we start with
a biased prior, over time the data (evidence) start to dominate,
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and eventually the influence of our initial prior beliefs is negli-
gible.
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Figure 4.9: Narrowing the posterior with each data point when
the inital prior is biased.

This toy example illustrates an important point that has great
practical importance. One can use information from previous
studies to derive a prior that then can be used for the next
study. This approach allows us to build on the information
available from previous work and accumuate knolwedge over
time.

Warning

Using the posterior from one study as a prior for another
study is a great advantage in Bayesian statistics, but it
comes with several potential risks and concerns. For ex-
ample:

• If the two studies are based on different models or
have different underlying assumptions, the posterior
from the first study may not accurately reflect the
relevant information for the second study.

• If the posterior from the first study contains errors
or biases, those errors can propagate and affect the
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second study. If the first study was not properly
designed, or had flaws in data collection or analysis,
these issues will carry over to the second study.

• Ideally, priors should be informed not only by data
but by a solid understanding of the theory and con-
text. Simply using a posterior from another study
may ignore important theoretical considerations or
lead to a misinterpretation of the evidence, espe-
cially if the second study aims to test hypotheses
that diverge from the first.

• Relying on the posterior from one study as a prior
might limit the exploration of other potential priors.
This can be problematic if there’s uncertainty or if
the previous study’s posterior was based on assump-
tions that are not robust across different contexts.

4.4 Summarizing the posterior

Once we arrive at the posterior distribution, the next crucial
step is to summarize and interpret it. Exactly how it is summa-
rized depends upon our objective. Essentially, we can divide
the ways to summarise the pestorior into three classes of ob-
jects:

• to specify the intervals of defined boundaries,

• to specify the intervals of defined probability mass, and

• to specify its point estimates.

To better understand the differences, let us look at a few exam-
ples.

To specify the interval of defined boundaries, we ask how much
posterior probability lies between, for example, 𝜃 = 0.5 and
𝜃 = 0.75.
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# To calculate how much posterior probability lies between 0.5 and 0.75
# for a posterior distribution modeled by a Beta distribution,
# we can use the cumulative distribution function (CDF) of the Beta distribution.
# The CDF will give the probability that a random variable
# from that distribution is less than or equal to a specific value.

# Assume the data from the last simulation
shape1 = a + k
shape2 = b + n - k
p_075 <- pbeta(0.75, shape1, shape2)
p_050 <- pbeta(0.50, shape1, shape2)

prob = p_075 - p_050
print(prob)

[1] 0.05389114

Likewise, to specify the intervals of defined mass, we ask, for
example what the boundary of the upper 20% posterior proba-
bility is.

# To find the boundary of the upper 20% of the posterior probability for a Beta distribution,
# we're looking for the 80th percentile of the distribution.
# In R we can use qbeta function for this purpose

lb <- qbeta(0.80, shape1, shape2)
ub <- qbeta(1, shape1, shape2)
print(c(lb, ub))

[1] 0.4638061 1.0000000

Intervals of this sort, which assign equal probability mass to
each tail, are very common in the scientific literature. We
can call them percentile intervals. In contrast, the highest
posterior density interval (HPDI) is the narrowest interval
containing the specified probability mass. For example, we may
ask: what is the 89% HPDI for the posterior distribution? To
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ask about the 89% HPDI, we’re referring to the interval where
the central 89% of the posterior probability lies, with the re-
maining 11% spread out outside of it. The HPDI is typically
used to summarize the most likely values of a parameter.

lb <- qbeta(0.055, shape1, shape2)
ub <- qbeta(0.945, shape1, shape2)
print(c(lb, ub))

[1] 0.3514191 0.4995254

Region of Practical Equivalence

The description of the posterior distribution allows to
draw conclusions from Bayesian analyses. We have just
demonstrated that the posterior distribution is often sum-
marized by using intervals. A particularly relevant “in-
terval” for hypothesis testing is the Region of Practi-
cal Equivalence (ROPE). ROPE defines a small interval
around a null value (e.g., 0) within which differences are
considered practically negligible (Figure 4.10). In other
words, the null hypothesis is re-defined from a point-null
to a range of values considered negligible or too small to be
of any practical relevance (Kruschke, 2014; Lakens, 2017;
Lakens et al., 2018), usually spread equally around the
null point value (e.g., [−0.1; 0.1]). The idea behind ROPE
is that an effect is almost never exactly zero, but instead
can be very tiny, with no practical relevance.5 This per-
spective unites significance testing with the focus on effect
size. The typical recommendation is to check how much
of the posterior density falls inside (or outside) the ROPE.
If a posterior distribution falls mostly within the ROPE,
the effect is considered practically equivalent to the null.
Likewise, if the posterior falls outside the ROPE, then it
is considered as practically significant. The Figure 4.11
illustrates potential error in decision making depending
on the true value (effect size) and sample size.
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Figure 4.10: The percentage of the posterior distribution
falling inside ROPE [.45, .55].
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Figure 4.11: Proportion of the posterior falling inside
ROPE [.45, .55] when the null (0.5) and al-
ternative (0.65) parameter is true.

Probability of making a wrong decision when null is true
at the level of Pr(ROPE) is 5% for each sample size:
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30 50 100 200 300 400 500
0.052 0.015 0.009 0.001 0 0.001 0

And converesely, the probability of correct decision when
the null is true at the level of Pr(ROPE) is 95% for each
sample size:

30 50 100 200 300 400 500
0 0 0 0 0 0.201 0.45

In other words, chasing the null is hard, even when using
Bayesian statistics.

Important

It is important to note that these calculations are
done for a one-paramter model. In a more complex
models, that we typically use, these values may look
dramatically different. It is important to run such
simulations specific for the planned design.

One of the core features of the Bayesian data anlysis is that
paramter estimates are expressed in the entire posterior dis-
tribution, which is not a single number, but instead a func-
tion that maps each unique parameter value onto a plausibil-
ity value. So in fact, providing a point estimate is not the
priority in Bayesian analysis because it discards information.
Nevertheless, if you must produce a single point to summarize
the posterior, it is very common to report the parameter value
with highest posterior probability – the maximum a poste-
riori (MAP) estimate. To report the MAP estimate for a

5Researchers often incorrectly use credible intervals for null hypothesis
testing. Often, researchers test whether a value of interest (usually 0)
is included in the 95% credible interval. If it is, then the null hypothesis
that the effect is zero is accepted; and if zero is outside the interval, then
the null is rejected. The reasoning is that if zero is outside the interval,
it must have a low probability density. This is true, but it’s meaningless:
any point value have a probability mass of exactly zero for a contionous
probability distribution.
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posterior distribution, we obtain the mode of the posterior dis-
tribution, which is the value of the parameter that maximizes
the posterior probability.

# For a Beta distribution, the MAP estimate can be calculated
# using the formula for the mode:

MAP = (shape1 - 1) / (shape1 + shape2 - 2)
print(MAP)

[1] 0.44

Alternative, one can simply report the mean:

print(shape1 / (shape1 + shape2))

[1] 0.4423077

Which estimate is considered optimal can be approached in
principled way by using a loss function. A loss function helps
determine which single estimate from the posterior is the “best”
one. It quantifies the cost of choosing a particular estimate
when the true value might be different. Different loss functions
lead to different optimal estimates. The two most common ex-
amples of a loss function are the absolute loss 𝑎𝑏𝑠(𝑑−𝑝), which
leads to the median as the point estimate, and the quadratic
loss (𝑑 − 𝑝)2, which leads to the posterior mean as the point
estimate (Figure 4.12).

4.5 The Savage–Dickey (pointwise) density
ratio

Probability vs density

For a continuous distribution
(e.g., normal distribution), the
probability of observing any
single point is zero, but the

probability density at that
point is not necessarily zero.
The Savage-Dickey density ra-
tio is meaningful because it
compares densities, not proba-
bilities. Likewise, in the con-

text of a likelihood function,
we compare the densities at
two different parameter values
and correctly obtain the likeli-
hood ratio.

The Bayes factor is a measure of relative evidence, the compari-
son of the predictive performance of one model against another
one. This comparison is a ratio of marginal likelihoods:

𝐵𝐹10 = 𝑝(𝑦|𝑀1)
𝑝(𝑦|𝑀0) (4.14)
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Figure 4.12: Effect of different loss functions on point estimate
of the posterior distribution.

𝐵𝐹10 indicates the extent to which the data are more likely
under 𝑀1 over 𝑀0, or in other words, the relative evidence
that we have for 𝑀1 over 𝑀0. In other words, Bayes Factor
quantifies on a continuous scale the change in belief that the
data bring about for the two models under consideration. The
interpretation of the Bayes Factor values are depicted in the
Table 4.3. For example, values close 1 indicate that the evidence
is inconclusive. This model comparison does not depend on a
specific parameter value. Instead, all possible prior parameter
values are taken into account simultaneously.

Table 4.3: Jeffreys’ scale for Bayes Factors.

Bayes Factor 𝐵𝐹10 Interpretation
1 - 3 Weak evidence for 𝑀1
3 - 10 Moderate evidence for 𝑀1
10 - 30 Strong evidence for 𝑀1
30 - 100 Very strong evidence for 𝑀1
> 100 Decisive evidence for 𝑀1

The Bayes Factor provides a powerful framework for model
comparison, but calculating the marginal likelihoods 𝑝(𝑦|𝑀1)
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and 𝑝(𝑦|𝑀0) can be computationally intensive, especially when
dealing with complex models or large datasets. In some cases,
however, we are interested in comparing models that are nested,
where one model is a special case of another (i.e., when the null
hypothesis is a special case of the alternative hypothesis). For
such cases, the Savage-Dickey method offers an elegant and
computationally efficient way to compute the Bayes Factor. In-
stead of integrating over the entire parameter space, the Savage-
Dickey method leverages the posterior-to-prior density ra-
tio at a specific parameter value, significantly simplifying the
calculation when both the prior and posterior distributions are
of the same family (e.g., Beta or normal distributions). This
approach allows for an efficient evaluation of the Bayes Fac-
tor, particularly in the context of hypotheses testing or model
comparison, without the need for extensive numerical integra-
tion.

The Savage-Dickey density ratio is calculated as:

𝐵𝐹10 = 𝑝(𝜃0|𝑦)
𝑝(𝜃0) (4.15)

where 𝑝(𝜃0) is prior density at 𝜃0 and 𝑝(𝜃0|𝑦) is the posterior
density at 𝜃0 given the data 𝑦.

Note that this is in contrast with the likelihood ratio we talked
about in the previous chapter:

𝐿𝑅 = 𝑝(𝑦|𝜃1)
𝑝(𝑦|𝜃0) (4.16)

where 𝑝(𝑦|𝜃1) is the likelihood of the data at 𝜃1 and 𝑝(𝑦|𝜃0) is
the likelihood of the data at 𝜃0.

Their direct comparison is summarised in the Table 4.4. Both
express how much more the data favor one hypothesis over
another. But Bayes Factor depends on the prior distribution
while the likelihood ratio is purely data-driven.
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Table 4.4: Key differences between Bayes Factor (Savage-
Dickey) vs Likelihood Ratio (Royall).

Feature
Bayes Factor
(Savage-Dickey) Likelihood Ratio (Royall)

ComparisonPrior vs. posterior
density at 𝜃0

Likelihood density at 𝜃0 vs
𝜃1

InterpretationHow much the data
update belief at 𝜃0

How much more likely one
parameter value is compared
to another

Incorporates
Pri-
ors?

Yes No (purely data-driven)

Interpreting Bayes Factor with Savage-Dickey

The Bayes Factor is a ratio used to quantify the relative
support for one hypothesis (or parameter value) compared
to another based on the observed data. This is typically
done as a ratio of marginal likelihoods of two competing
statistical models.
In contrast, when testing a specific parameter value 𝜃0,
the standard Bayes Factor is defined as the ratio of the
likelihood of the data given the parameter value to the
marginal likelihood (also called evidence). Similarly, the
Savage-Dickey density ratio is a special case where it sim-
plifies to the posterior-to-prior ratio at a specific param-
eter value. The key assumption in the method is that it
holds when null hypothesis is nested under the alterna-
tive hypothesis, i.e., the null can be obtained from the
alternative by setting 𝜃 equal to 𝜃0. Why is it so?
The Bayes’ rule formula in the context of data analysis
and a specific parameter value of the model is:

𝑝(𝜃0|𝑦) = 𝑝(𝑦|𝜃0) × 𝑝(𝜃0)
𝑝(𝑦)

If we re-write the equation but emphasise that the equa-
tion gives a relation between the unconditional probability
of a parameter 𝑝(𝜃0) and the probability of the same pa-
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rameter conditioned on data, 𝑝(𝜃0|𝑦), we then obtain:

𝑝(𝜃0|𝑦) = 𝑝(𝑦|𝜃0)
𝑝(𝑦) × 𝑝(𝜃0)

We further re-arrange the terms so that they match the
formula of the Savage-Dickey method, and obtain:

𝑝(𝑦|𝜃0)
𝑝(𝑦)⏟

likelihood-to-marginal likelihood

= 𝑝(𝜃0|𝑦)
𝑝(𝜃0)⏟

posterior-to-prior

The Savage-Dickey posterior-to-prior ratio is mathemat-
ically equivalent to the standard Bayes Factor (the
likelihood-to-marginal likelihood ratio) when evaluated at
a specific point hypothesis. The key consequence or inter-
pretation of this equivalence is that the Bayes Factor can
be understood in two ways:

• The interpretation of a shift in belief: As a ratio
of posterior to prior probability at a specific value
of the parameter, i.e, as a way of comparing how
likely a parameter value is given the data (posterior)
relative to how likely it was before seeing the data
(prior).

• The interpretation of a likelihood-based comparison:
As a ratio of likelihood to marginal likelihood (ev-
idence), i.e., as a way of assessing how much more
likely the data is under a specific hypothesis (pa-
rameter value) compared to the total evidence, i.e.,
when considering all possible hypotheses (all param-
eter values). In other words, the marginal likelihood
tells us how likely the data is overall, considering all
possible parameter values weighted by how probable
each value is according to the prior.
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set.seed(1234)
data = rbinom(100, 1, prob=.5)

a = 2
b = 5
k = sum(data)
n = length(data)

# Fine resolution for calculation
thetas <- seq(0, 1, length.out = 10000)
prior = dbeta(thetas, shape1 = a, shape2 = b)
lik = dbinom(x=k, size=n, prob=thetas)
posterior = dbeta(thetas, shape1 = a + k, shape2 = b + n - k)
idx <- which.min(abs(thetas - 0.5)) # Find closest value to 0.5
marginal_lik = integrate(function(theta) dbinom(k, size = n, prob = theta) * dbeta(theta, a, b),

lower = 0, upper = 1, rel.tol = 1e-8)$value

BF1 = posterior[idx] / prior[idx]
BF2 = lik[idx] / marginal_lik
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Figure 4.13: Bayes Fac-
tor based on
Savage-Dickey
posterior-to-
prior density
ratio.
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Figure 4.14: Bayes Fac-
tor based on
likelihood-
to-marginal
likelihood ratio.

It is important to remember that this holds only when
some assumptions are met. For example:

• the hypothesis put to the test is expressed as a spe-
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cific parameter value;

• the prior and posterior should both be of the same
family;

• the prior, likelihood, and posterior should be smooth
at the parameter of interest;

• for numerical methods, grid resolution and integra-
tion should be sufficiently precise.

4.6 Summary

Bayesian data analysis is a statistical approach that applies
Bayes’ rule to update beliefs6 based on new data. It treats
parameters as probability distributions that are refined by ev-
idence. This approach allows for incorporating prior knowl-
edge, quantifying uncertainty, and making probabilistic predic-
tions.

The basic tenets of Bayesian inference

• Our degree of belief is quantified by probability – we
can express varying levels of uncertainty that can
vary between 0 and 1.

• Our prior beliefs are updated by evidence accord-
ing to the Bayes’ rule which ensures coherence and
adherence of our propositions with basic logical ax-
ioms.

• We treat the parameters of our probabilistic models
as random variables. This allows us to capture the
uncertainty about their true values, resulting in a
posterior distribution that reflects both prior beliefs
and the observed data.

6The notion of belief plays a central role in Bayesian statistics, but these
beliefs need not be the literal beliefs of any person. In Bayesian infer-
ence, belief refers to the degree of confidence in a particular hypoth-
esis, represented mathematically as a probability distribution.
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4.7 Exercises

1. Pick a value of a 𝜃 parameter. Simulate some data by
repeatedly tossing a coin 100 times. Pick a prior using
beta distribution. Now, calculate the posterior distribu-
tion when a) one assumes all data are collected at once,
b) when one assumes data are collected sequentially. Do
they differ? Explain why.

2. Using the simulation from exercise 1, quantify your cer-
tainty that the simulated data indeed come from the dis-
tribution you assumed when they were generated. There
are multiple ways to approach this problem.

3. Consider how the Bayes Factor interpretation may change
when the prior is flat (e.g., Beta(1,1)).

4.8 Relation to Open Science

The bayesian paradigm is highly relevant for open science in
several key ways:

1. Transparency in Modeling: Bayesian statistics encourages
the explicit specification of prior beliefs, likelihood func-
tions, and the overall model. This makes it easier for
researchers to document their assumptions, which is im-
portant for transparency. In open science, sharing these
models allows others to critique, reproduce, and build on
the research.

2. Flexibility and Updating Models: One of the key features
of Bayesian statistics is the ability to update beliefs as
new data becomes available. This iterative approach re-
flects the open science goal of adapting to new evidence
in a flexible, transparent manner. In an open science
context, researchers can share their ongoing updates to
models and hypotheses, allowing others to contribute or
modify them.

3. Better Communication of Uncertainty: Bayesian methods
explicitly quantify uncertainty in the form of probability
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distributions. This focus on uncertainty is important for
open science because it helps communicate the limitations
of findings and fosters more honest, nuanced interpreta-
tions of research results.

Bayesian data analysis strengthens open science by ensuring
transparency, improving reproducibility, better quantifying un-
certainty, and reducing biases in inference. As open science con-
tinues to evolve, Bayesian approaches provide a rigorous and
flexible framework for making scientific knowledge cumulative
and accessible.

4.9 Recommendations

If you are interested in learning about probability theory, the
open course at MIT by Prof. J. Tsitsiklis is absolute gold Intro-
duction to probability.
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5 The frequentist paradigm

In Bayesian inference, we quantify uncertainty about param-
eters using probability distributions, combining prior beliefs
with data to update our knowledge. This approach treats pa-
rameters as random variables with probability distributions re-
flecting our uncertainty.

Frequentist inference, in contrast, takes a different perspec-
tive. It does not assign probabilities to parameters but in-
stead considers them as fixed, unknown quantities. Uncertainty
comes from the randomness of data, not the parameters them-
selves. In this view, probability represents long-run frequencies
of events, and inference is based on procedures, which control er-
ror rates over repeated (hypothetical) samples (experiments).

Interestingly, the likelihood function is often the only thing a
Bayesian and frequentist have in common. Yet, they have fun-
damentally different interpretation of what is meant by proba-
bility.

5.1 Notion of probability – foundation and
interpretation

Intuitevely, we all have a good sense of what the notion of
probability is. But it may be interpreted in different ways. For
example, consider the following sentence from a medical leaflet:
“Approximately 1 in 1,000 people may experience a severe al-
lergic reaction (anaphylaxis) while taking this medication.” Or
this one “Our analytic team says that there’s a 70% probabil-
ity that the new marketing strategy will increase sales.” These
sentences reflect two distinct ways of how to think about prob-
ability.
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5.1.1 Philosophical aspects

1) Epistemic probability (De Morgan, Boole, Carnap,
Savage). Probabilities represent degrees of belief about
events (the occurrence of the state of affairs) or hypothe-
ses. Example: we may strongly believe that a coin is fair,
i.e., we belive there is 50% chance that it lands heads
up – this is our belief, not an inherent property of the
coin. Our belief can change with new data (e.g., if we
toss the coin many times and see heads more often than
expected, we may revise our belief about its fairness).

2) Physical probability (Venn, Maxwell). Probabilities
represent relative frequencies in repeated experiments or
tendencies in physical systems. Example: A coin landing
heads up has a 50% probability if, in a long sequence of
tosses, it lands heads about half the time. Alternatively,
probability can be seen as an inherent tendency in the
system (e.g., the physical properties of the coin and how
it is flipped determine its fairness). This interpretation
does not apply to hypotheses because a hypothesis is not
a repeatable (physical) event.

Epistemic probability is about what we believe (subjective,
can change with new information) while physical probability
is about what actually happens in repeated trials (objective,
based on observed frequencies or inherent tendencies). We will
return later to the issue of subjectivity / objectivity.

5.1.2 Consequences for data analysis

These two interpretations of probability have practical conse-
quences for data analysis.

Bayesian inference (epistemic probability). We have pa-
rameters Θ and observations 𝑦 which are both treated as ran-
dom variables reflecting our prior beliefs 𝑝(Θ) and likelihood
𝑝(𝑦|Θ), respectively. Our goal is to update our beliefs using
Bayes’ rule, i.e., to find 𝑝(Θ|𝑦). That’s all!

Frequentist inference (physical probability). The key
idea is that some unknown quantities – such as the mass of
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an electron – are not random in reality. If they are not ran-
dom, then we cannot assign them a probability distribution.
Instead, they are fixed but unknown. More specifically, the
reasoning goes as follows.

• There is a constant true but unknown value 𝜃 (e.g., the
mass of an electron).

• It happens so that some observations 𝑥 are obtained from
a probability distribution of a random variable 𝑋 such
that 𝑝𝑋(𝑥; 𝜃). This is an ordinary probability distribution
(not a conditional probability). It is just affected by the
value of 𝜃, which is constant. As a result, while 𝜃 is fixed
(and unknown), our observations 𝑥 are random. In other
words, when we perform an experiment, one time we get
one set of values 𝑥1 and the other time another set of
values 𝑥2, and so on…

• Given this setup, we take the specific set of data 𝑥 and
we process them through a function 𝑔(𝑥) which is called
an estimator. The output of that function is an estimate,

̂𝜃. Note that once we have some specific observations 𝑥,
we have a specific estimate ̂𝜃. While the process of map-
ping a specific 𝑥 to a specific ̂𝜃 is deterministic, estimates
are realizations of the random variable Θ̂ because they de-
pend on the outcomes of the random variable 𝑋. In other
words, since 𝑋 is a random variable (data are random),
then Θ̂ must also be a random variable (our estimates are
random).

𝜃
𝑝𝑋(𝑥;𝜃)
−−−−→

rv. X
𝑥

𝑔(𝑥)
−−−→
rv. Θ̂

̂𝜃 (5.1)

Note

Coming up with good estimators is a bit of an art. Good
estimators aim at the error ̂𝜃 − 𝜃 to be “small”. For exam-
ple, an unbiased estimator of the population variance 𝜎2 is
sample variance 𝑆2 = 1

𝑛−1 ∑𝑛
𝑖=1(𝑋𝑖 −�̄�)2. Assuming that

𝑋1, ..., 𝑋𝑛 are independent and identically distributed ac-
cording to a normal distribution. In practice, this means
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that estimators can be designed in many ways – they need
to adhere to certain properties but to some extent they
are arbitrary. While Bayes’ rule is a single unambiguous
method to draw inference, classical statistics allows for
some ambiguity in this respect.

Tip

Frequentist inference in prac-
tice means that there are many
candidate models that gener-
ated the data 𝑥, one for each
possible value of 𝜃. The goal
is to infer the best possible
model. For example, we choose
between two candidate models:
𝜃 = 0.5 vs. 𝜃 = 0.75. Or
we choose between 𝜃 = 0.5
vs. 𝜃 ≠ 0.5. Note that in the
latter case, we do a compari-
son between a single model and
all models that can take on any
value of 𝜃 except 0.5.

5.2 The sampling distribution

To better understand the structure of reasoning in the frequen-
tist paradigm, let us consider our toy example of a coin tossing
experiment. So, we start with the assumption that there is a
true but unknown 𝜃 parameter that is constant. This is the true
value of a coin “fairness”, i.e., its tendency to lend heads up. We
assume that the coin tosses are generated from a Binomial prob-
ability distribution such that 𝑘 ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛 = 𝑛, 𝜃 = 0.5).
In other words, we assume that the data of the coin tossing
experiment are random and come from a specific probability
distribution, which depends on the 𝑡ℎ𝑒𝑡𝑎 parameter. How do
we proceed to infer the value of 𝜃.

The recipe of the frequentist inference tells us that we first think
of hypothetical data which come from repeated sampling. In
other words, we repeat the hypothetical process of data collec-
tion from the same generative model many many many times.
Let us simulate some data through repeated sampling of an
experiment with the sample size of 𝑛 = 50.

set.seed(12434)

# generate data assuming exact repetition of an experiment
get_binom_data <- function(theta_true, n){

dat <- rbinom(n, 1, prob=theta_true)
return(dat)

}

n_sim <- 1e+5
theta_true <- 0.5
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n <- 50
data <- replicate(n_sim, get_binom_data(theta_true=theta_true, n=n), simplify=T)

These are the data obtained from an exemplary hypothethical
experiment:

print(data[,4])

[1] 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1
[39] 1 1 0 1 1 1 1 0 0 1 0 0

What may be a good description (i.e., statistic) of the data gen-
erated by each experiment? Perhaps its maximum likelihood?
In case of a binomial model, the maximum likelihood estima-
tor is ̂𝜃 = 𝑘

𝑛 . Hence, let us calculate the estimate ̂𝜃 for every
experiment.

Sampling distribution (proportion): theta =  0.5
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Figure 5.1: Sampling distribution of ̂𝜃 (i.e, the proportion of
heads).

By repeatedly taking samples and calculating a statistic (i.e.,
proportion), we have built a distribution, which describes the
variability of that statistic across different samples. This distri-
bution is called the sampling distribution. In other words,
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we obtained a distribution of ̂𝜃. Confusingly, the standard de-
viation of the sampling distribution is called the standard er-
ror, which helps us estimate how much a sample result might
differ from the population parameter. In other words, the vari-
ability of a sample statistic across repeated samples can be
quantified using the standard error, which decreases as sample
size increases.

Second, we see that given our large number of samples 1e+5
the sample statistic tends to converge to the true population
parameter 𝜃. This is called the law of large numbers.

Third, we see that the obtained distribution resembles a nor-
mal distribution. This is quite cool – even though the data
do not come from a normal distribution, the distribution of
their means do! In fact, if we take enough repeated samples
of a certain size, the sampling distribution of the sample mean
tends to follow a normal distribution, regardless of the shape
of the population distribution (assuming finite variance). This
is called the central limit theorem.

In sum, our simulations reveal quite a powerful insight – sam-
ple statistics (e.g., sample mean, sample proportion) vary from
sample to sample, but they follow a predictable pattern known
as a sampling distribution.

Central Limit Theorem under independence

If {𝑋1, 𝑋2, … , 𝑋𝑛} are independent and identically dis-
tributed (i.i.d.) random variables, each representing an
observation from a population with expected value 𝜇 and
finite variance 𝜎2, and let 𝑋 denote the sample mean:

𝑋 ≡ 𝑋1 + 𝑋2 + ⋯ + 𝑋𝑛
𝑛 ,

then as 𝑛 → ∞, by the Law of Large Numbers, the distri-
bution of the random variable 𝑋 approaches:

𝑋 ≈ 𝑁 (𝜇, 𝜎2

𝑛 ) ,

which means that the distribution of the sample mean 𝑋
will increasingly resemble a normal distribution, regard-
less of the original population distribution!
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In other words, with a sufficiently large sample, the av-
erage of that sample will follow a normal (bell-shaped)
curve, even if the original data does not. The larger the
sample size 𝑛, the closer the sample mean 𝑋 is to the
true population mean 𝜇. The variability of the sample
means (the standard deviation) decreases as 𝑛 increases,
shrinking at a rate of 𝜎√𝑛 .
To make comparisons across different data sets, we can
“standardize” the sample mean by converting it into a
new random variable 𝑍:

𝑍 ≡ 𝑋 − 𝜇
𝜎/√𝑛 ,

which follows a standard normal distribution:

𝑍 ∼ 𝑁(0, 1).

Why does 𝑍 have variance 1 even though the sample mean’s
variance shrinks?
Even though the variance of 𝑋 decreases as 𝑛 increases,
we divide by its standard deviation. Standardizing means
dividing by the square root of the variance, which cancels
out the shrinking effect, ensuring that 𝑍 always has a
variance of 1.
You may now ask how to standardize the sample mean
𝑋 when we do not know the population variance 𝜎2. We
estimate it using the sample variance:

𝑠2 = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑋𝑖 − 𝑋)2.

As a result, we obtain a standardized sample mean mea-
sured in units of the estimated standard error (using the
sample standard deviation 𝑠) such that:

𝑇 = 𝑋 − 𝜇
𝑠/√𝑛 .

Since the sample variance 𝑠2 is a random variable itself, it
introduces additional variability in the denominator. This
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extra uncertainty causes the distribution of the standard-
ized mean 𝑇 to have heavier tails compared to the normal
distribution. Therefore, our standardization is no longer
exactly normal, but follows a Student’s 𝑡-distribution with
𝜈 = 𝑛 − 1 degrees of freedom:

𝑇 ∼ 𝑡(𝜈).

The 𝑡-distribution looks similar to the normal distribu-
tion but has heavier tails (more spread out), especially
for small 𝑛. As 𝑛 → ∞, the 𝑡-distribution approaches the
standard normal distribution.

5.2.1 The Law of Large Numbers and Central Limit
Theorem

Let us explain the central limit theorem with simulations.

Let’s assume that the hypothetical data come from a model
with an exponential probability distribution, 𝑋 ∼ 𝐸𝑥𝑝(𝜆 = 1).
First, let us sample many many experiments with the sample
size 𝑛 = 30 and 𝑛 = 3000 (Figure 5.2).

set.seed(1234)
exp_dat1 <- replicate(n_sim, rexp(30, 1))
exp_dat2 <- replicate(n_sim, rexp(1000, 1))
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Figure 5.2: Sampling distribution.

And plot the distribution of their means (Figure 5.3).
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exp_m1 <-colMeans(exp_dat1)
exp_sd1 <- apply(exp_dat1, 2, function(x){sd(x)})
exp_m2 <-colMeans(exp_dat2)
exp_sd2 <- apply(exp_dat2, 2, function(x){sd(x)})

cat("N=30", "\n",
"True mean: ", 1, "\n",
"Obtained mean: ", round(mean(exp_m1), 3), "\n",
"True sigma: ", round(sqrt(1/30), 3), "\n",
"Obtained sigma: ", round(sd(exp_m1), 3), "\n",
"N=1000", "\n",
"True mean: ", 1, "\n",
"Obtained mean: ", round(mean(exp_m2), 3), "\n",
"True sigma: ", round(sqrt(1/1000), 3), "\n",
"Obtained sigma: ", round(sd(exp_m2), 3)
)

N=30
True mean: 1
Obtained mean: 1.001
True sigma: 0.183
Obtained sigma: 0.182
N=1000
True mean: 1
Obtained mean: 1
True sigma: 0.032
Obtained sigma: 0.032
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Figure 5.3: Sampling distribution.
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We see that indeed the sampling distibution of the means resem-
bles a normal distribution 𝑁 (𝜇, 𝜎2

𝑛 ). Let us now standardize
the means and plot their distribution (Figure 5.4).
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Figure 5.4: Sampling distribution.

v1 <- 30-1
v2 <- 1000-1
cat("N=30", "\n",

"True mean: ", 1, "\n",
"Obtained mean: ", round(mean(exp_t1), 3), "\n",
"True sigma: ", round(sqrt(v1/(v1-2)), 3), "\n",
"Obtained sigma: ", round(sd(exp_t1), 3), "\n",
"N=1000", "\n",
"True mean: ", 1, "\n",
"Obtained mean: ", round(mean(exp_t2), 3), "\n",
"True sigma: ", round(sqrt(v2/(v2-2)), 3), "\n",
"Obtained sigma: ", round(sd(exp_t2), 3)
)

N=30
True mean: 1
Obtained mean: -0.19
True sigma: 1.036
Obtained sigma: 1.141
N=1000
True mean: 1
Obtained mean: -0.03
True sigma: 1.001
Obtained sigma: 1.006
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These new distributions of the standardized means also resem-
ble the theoretical standard normal distribution as long the
sample size is large. We demonstarted that the assumptions
hold true. But we are still faced with the problem of how to
approximate the sampling distribution from a single study.

5.3 Single study

We have demonstrated that with repeated sampling we even-
tually converge on a true but unknown parameter value. Yet,
we are still faced with the problem – how to infer the popula-
tion parameter from a single sample, i.e., data from a single
experiment. The solution is to approximate the sampling dis-
tribution from the observed data using estimators. In brief, we
take the obtained data and process them through an estima-
tor (function) to arrive at the best estimate of the population
parameter.

To demonstrate the idea, let us revisit our coin tossing example.
Yet, instead of using pre-defined estimators, let’s try to see if we
can arrive at the same results through simulations. A method
used for this purpose is called bootstrapping - a resampling
method used to estimate the distribution of a statistic (e.g.,
the mean) by repeatedly sampling with replacement from the
original dataset.

The method works like this:

• Given a dataset of size 𝑛, create multiple new datasets
(called bootstrap samples) by randomly sampling with
replacement from the original dataset. Each bootstrap
sample is also of size 𝑛.

• Compute the statistic of interest for each bootstrap sam-
ple.

• Repeat this process many times (typically 1,000 or more
iterations).

To demonstrate the method, we can use the data from one
sample generated from the previous code of the coin tossing
experiment.
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id <- 4
data_obs <- data[, id]
n_size <- length(data_obs)
print(data_obs)

[1] 1 1 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1
[39] 1 1 0 1 1 1 1 0 0 1 0 0
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Figure 5.5: Sampling distribution through bootstrapping.

Indeed, we obtained a sampling distribution that is normal. To
check if we did everything correct, let us compare the estimates
obtained from bootstrapping vs estimators. The estimator of
the mean and standard error from a binomial distribution is

̂𝜃 = 𝑘
𝑛 and 𝑆𝐸( ̂𝜃) = √ ̂𝜃×(1− ̂𝜃)

𝑛 , respectively.

m <- sum(data_obs) / n_size
se <- sqrt((m*(1-m))/n_size)
ci <- c(m - 1.96 * se, m + 1.96 * se)
cat(paste(

"Bootstrapped mean: ", prop_boot_m, "\n",
"Estimator mean: ", sum(data_obs) / n_size, "\n",
"Bootstrapped CI: ", prop_boot_CI[1], "\n",
"Estimator CI: ", round(ci[1], 2), "\n",
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"Bootstrapped CI: ", prop_boot_CI[2], "\n",
"Estimator CI: ", round(ci[2], 2)

)
)

Bootstrapped mean: 0.60066
Estimator mean: 0.6
Bootstrapped CI: 0.46
Estimator CI: 0.46
Bootstrapped CI: 0.74
Estimator CI: 0.74

They both align. Instead of standard error, I used something
called the confidence interval, which is approximately de-
fined by the range ̂𝜃 ± 𝑆𝐸 ∗ 1.96. Why to define the confidence
interval?

5.4 Confidence procedures and intervals

In general, (estimates) intervals are constructed to account for
measurement or sampling uncertainty by yielding a range of
values for a parameter instead of a single value (consider 1/8
likelihood interval or HPDI). Confidence interval (CI) is an-
other kind of interval estimates. The meaning of the CI comes
from confidence interval theory formalized by Jerzy Neyman.
According to the theory (after Morey…), when a researcher
is interested in estimating a parameter 𝜃, they perform three
steps:

• Collect relevant data.

• Compute two numbers – the smaller of which we can call
L, the greater U – forming an interval (L, U) according
to a specified procedure.

• State that L < 𝜃 < U – that is, that 𝜃 is in the interval.
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We may choose any procedure in step 2 such that in the long
run the claim in step 3 will be correct, on average, X% of time.
A confidence interval is any interval computed using such a
procedure.

Note that what happens in step 3 is not a belief, any reason-
ing from the data, or any uncertainty about 𝜃. It is merely a
dichotomous statement that is meant to have a specified prob-
ability of being true in the long run.

The basic definition of CI is: CI is an interval generated by a
procedure that, on repeated sampling, has a fixed probability
of containing the parameter. If the probability that the process
generates an interval including 𝜃 is .5, it is a 50 % CI; likewise,
the probability is .95 for a 95 % CI. In other words, these are
the probabilities that reflect the accuracy of our procedure.

Let us simulate! The confidence intervals we will construct are
two-sided or two-tailed intervals that are symmetrical around
the sample statistic, and give us 95% confidence in our pro-
cedure. In other words, we will construct very popular 95%
CI.

plot(0,0,type='n', xlim=c(1, 100), ylim=c(0, 1), bty='l', ylab="Theta", xlab='i-th sample',
main="95% CI in 100 repeated samples")

abline(h=theta_true)
for (i in 1:100){

dd <- data[, i]
n_size <- length(dd)
m <- sum(dd) / n_size
se <- sqrt((m*(1-m))/n_size)
ci <- c(m - 1.96 * se, m + 1.96 * se)
col = 'black'
if (ci[1]> theta_true){
col = 'red'

} else if (ci[2] < theta_true){
col= 'red'

} else if (i == id) {
col = 'orange'

}
points(i, m, pch=20)
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segments(i, ci[1], i, ci[2], col=col)
}
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Our procedure is indeed reliable. Constructing 95% CIs leads
to the observation that 5% of these intervals do not include the
true parameter value.

Note that it is unlikely that two samples from a given popu-
lation will yield identical confidence intervals. But, over time
a large proportion of the confidence intervals constructed from
the same population will contain the parameter. It is a miscon-
ception to claim that the first sample has an interval including
the true value with 95% probability – that there is a 95% prob-
ability that future samples would obtain statistics within the
first confidence interval. This would only be true if the initial
estimate is exactly equal to the true parameter. The confusion
comes from thinking that the interval is a “range of possible
values” for the true parameter, which is not the case. The true
parameter value is fixed but unknown.

Instead, we should think about the CI in the following way.
Before the data is collected, we can say that if we were to re-
peat the sampling process many times, 95% of the intervals we
construct (from different samples) would contain the true pop-
ulation parameter. This reflects the reliability of the process,
not the interval itself. After the data is collected and the in-
terval is computed, the true population parameter either is or
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is not in the interval. The confidence level (like 95%) refers
to how often this method will correctly capture the true value
if we repeat the process with many samples. It doesn’t apply
to any one specific interval. The correct interpretation of the
interval indicates that we quantify our uncertainty not in the
true parameter value but in our behaviour. Namely, how often
we are mistaken given a particular procedure.

5.4.1 Confidence fallacy

The Fundamental Confidence Fallacy

If the probability that a random interval contains the true
value is X%, then the plausibility or probability that a
particular observed interval contains the true value is also
X%; or, alternatively, we can have X% confidence that the
observed interval contains the true value.

To demonstrate the fundamental fallacy, we use an example
taken from Morey that is based on the confidence interval lit-
erature.

A 10-meter-long research submersible with several
people on board has lost contact with its surface
support vessel. The submersible has a rescue hatch
exactly halfway along its length, to which the sup-
port vessel will drop a rescue line. Because the res-
cuers only get one rescue attempt, it is crucial that
when the line is dropped to the craft in the deep
water that the line be as close as possible to this
hatch. The researchers on the support vessel do not
know where the submersible is, but they do know
that it forms two distinctive bubbles. These bub-
bles could form anywhere along the craft’s length,
independently, with equal probability, and float to
the surface where they can be seen by the support
vessel.

The rescue hatch is the unknown location 𝜃, and the bubbles
can rise from anywhere with uniform probability between 𝜃 − 5
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meters (the bow of the submersible) to 𝜃 + 5 meters (the stern
of the submersible). The rescuers want to use these bubbles to
infer where the hatch is located.

𝑦𝑖 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(𝜃 − 5, 𝜃 + 5)

We will denote the first and second bubble observed by 𝑦1 and
𝑦2, respectively (𝑦1 always denotes the smaller location of the
two). We denote their difference as 𝑑.

The rescuers first note that from observing two bubbles, it is
easy to rule out all values except those within five meters of
both bubbles because no bubble can occur further than 5 meters
from the hatch. If the two bubble locations were 𝑦1 = 4 and
𝑦2 = 6, then the possible locations of the hatch are between 1
and 9, because only these locations are within 5 meters of both
bubbles. This constraint is formally captured in the likelihood,
which is the joint probability density of the observed data for
all possible values of 𝜃. In this case, because the observations
are independent, the joint probability density is:

𝑝(𝑦1, 𝑦2; 𝜃) = 𝑝𝑦(𝑦1; 𝜃) × 𝑝𝑦(𝑦2; 𝜃).

The density for each bubble 𝑝𝑦 is uniform across the sub-
mersible’s 10 meter length, which means the joint density must
be 1/10 × 1/10 = 1/100. If the lesser of 𝑦1 and 𝑦2 (which we
denote 𝑥1) is greater than 𝜃 − 5, then obviously both 𝑦1 and
𝑦2 must be greater than 𝜃 − 5. This means that the density,
written in terms of constraints on 𝑥1 and 𝑥2, is:

𝑝(𝑦1, 𝑦2; 𝜃) = {1/100 if 𝑥1 > 𝜃 − 5 and 𝑥2 < 𝜃 + 5,
0 otherwise. (5.2)

If we write the Equation 5.2 as a function of the unknown
parameter 𝜃 for fixed, observed data, we get the likelihood,
which indexes the information provided by the data about the
parameter. In this case, it is positive only when a value 𝜃 is
possible given the observed bubbles

𝑝(𝜃; 𝑦1, 𝑦2) = {1 𝜃 > 𝑥2 − 5 and 𝜃 < 𝑥1 + 5,
0 otherwise.
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We replaced 1/100 with 1 because the particular values of the
likelihood do not matter, only their relative values. Writing the
likelihood in terms of ̄𝑥 and the difference between the bubbles
𝑑 = 𝑥2 − 𝑥1, we get an interval:

𝑝(𝜃; 𝑦1, 𝑦2) = {1 ̄𝑥 − (5 − 𝑑/2) < 𝜃 ≤ ̄𝑥 + (5 − 𝑑/2),
0 otherwise.

If the likelihood is positive, the value 𝜃 is possible; if it is 0, that
value of 𝜃 is impossible. Expressing the likelihood as in Eq. 2
allows us to see several important things. First, the likelihood is
centered around a reasonable point estimate for 𝜃, ̄𝑥. Second,
the width of the likelihood 10−d, which here is an index of
the uncertainty of the estimate, is larger when the difference
between the bubbles d is smaller. When the bubbles are close
together, we have little information about 𝜃 compared to when
the bubbles are far apart. Keeping in mind the likelihood as the
information in the data, we can define our confidence procedure
based on the sampling distribution of the mean ̄𝑥.
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Figure 5.6: Sampling distribution of
𝜃.

The sampling distribution of ̄𝑥 has a known triangular distribu-
tion with 𝜃 as the mean (see Figure 5.6). With this sampling
distribution, there is a 50 % probability that ̄𝑥 will differ from
𝜃 by less than 5 − 5/

√
2. We can thus use ̄𝑥 − 𝜃 by noting

that there is a 50 % probability that 𝜃 is within this same dis-
tance of ̄𝑥 in repeated samples. This leads to the confidence
procedure:

̄𝑥 ± (5 − 5/
√

2)
This procedure also has the familiar form ̄𝑥 ± 𝐶 × 𝑆𝐸. Con-
sider Figure 5.7, which shows the resulting likelihood, Bayesian
posterior, and confidence intervals when 𝑦1 and 𝑦2 are either
close to one another (scenario 1) or far apart (scenario 2). Note
the relation between the confidence interval and the likelihood
in both scenarios. In the scenario 1, the CI is nested in the
likelihood while in the scenario 2 the opposite is true. When
the bubbles are far apart (scenario 2), the hatch can be local-
ized very precisely: the bubbles are far enough apart that they
must have come from the bow and stern of the submersible.
In other words, we are 100% sure that the hatch must be lo-
cated between these bubbles. This is reflected in the likelihood
function and also in the Bayesian posterior when assuming uni-
form prior. When the data is clear (i.e., the bubbles are far
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apart), the posterior distribution is narrow and more concen-
trated around the true parameter (the hatch’s location). When
the bubbles are close together, the posterior distribution is more
spread out, reflecting the greater uncertainty about the hatch’s
location. In contrast, the confidence interval cannot represent
50% probability of containing the true parameter. The fallacy
occurs when one misinterprets confidence levels as direct prob-
abilities in a specific case. The confidence level (e.g., 50%)
applies to the procedure, not any one particular interval. If we
were to repeat the experiment many times, 50% of the intervals
generated using this method would contain the true parameter,
but we cannot assign a probability to any single interval after
we have observed it.
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Figure 5.7: Confidence and posterior interval to submersible
rescue attempts.

5.5 Significance testing (R. Fisher)

P-value is the probability of obtaining test results
at least as extreme as the result actually observed
given the parameter values of the model under con-
sideration.

𝑃 𝑟(𝑇 (𝐷𝑠𝑖𝑚) ≥ 𝑇 (𝐷𝑜𝑏𝑠); mdl, int)

where 𝑇 (𝐷𝑠𝑖𝑚) is a descriptive summary value of
data that were sampled from a hypothetical popula-
tion characterized by (fixed) parameters of a statis-
tical model 𝑚𝑑𝑙 according to stopping and testing
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intentions 𝑖𝑛𝑡 while 𝑇 (𝐷𝑜𝑏𝑠) is a descriptive sum-
mary value of data that were observed according to
the same model as well as the stopping and testing
intentions.

The concept of the p-value was introduced by Ronald A.
Fisher as a way to measure the strength of evidence against a
null hypothesis. According to Fisher, the p-value (or proba-
bility value) is the probability of obtaining a test statistic at
least as extreme as the one observed, assuming that the null
hypothesis is true. For example, in our coin tossing experiment,
we have:

• stopping and testing intentions such that we stop the ex-
periment once 50 tosses is obtained;

• a statistical model generating tosses from a fair coin, i.e.,
the parameter value of coin landing heads is fixed at 𝜃 =
0.5;

• a descriptive summary of coin tosses (sufficient statistic)
which is the number of heads.

Again, our observed data have 30 heads. Now we need to build
the probability distribution if we were sampled many experi-
ments under these conditions. We already simulated such imag-
inary data but were considering the proportion of tosses. Now
we simply count the number of heads per sample, and compute
the p-value (Figure 6.1).

Fisher’s Interpretation of the p-value

1. Measure of Evidence – Fisher saw the p-value as
a tool to quantify how unusual the observed data is
under the null hypothesis.

2. Continuous Measure – Unlike strict decision-
making rules, Fisher believed that smaller p-values
provided stronger evidence against the null hypoth-
esis.

3. No Fixed Threshold – Fisher did not advocate for
a strict cutoff (such as 0.05). Instead, he suggested
that p-values should be interpreted in context.
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4. Significance Testing – He proposed that if the p-
value is “small enough”, the data provide reason
to doubt the null hypothesis.

The Fisherian approach (by Ronald Fisher) emphasizes p-
values and evidence against 𝐻0 without strict decision-making.
Interpretation of p-value as strength of evidence.
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Figure 5.8: Sampling plan with the stopping rule Stop when 50
trials.

Computing p-value using exact
binomial test – an exact test of a
simple null hypothesis about the
probability of success in a Bernoulli
experiment. We obtain the same
p-value as the one from our
simulations.

5.5.1 Relevance of stopping rules

The sampling distribution depends on the particular experi-
mental scheme chosen. Previously, we set the sample size to be
fixed at 𝑛 = 50, and obtained 𝑘 = 30 heads. What if there is
another sample plan but the obtained data are the same? For
example, we could also sample until we obtained 𝑛 − 𝑘 failures.
Let us simulate such a scenario. The sampling distribution un-
der the new sampling plan is depicted in the Figure 5.9. As
a consequence of the sampling plan, we obtain a different p-
value despite collected exactly the same data. In other words,
the intensions before data collection affect our inference. This
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striklingly different than what the frequentist interpretation of
probability promises.
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Figure 5.9: Stop when 50-30 failures.

Sampling plan and likelihood paradigm

How does the sampling plan affect the inference according
to the likelihood paradigm? The Figure 5.10 depicts two
likelihood functions: one under the fixed sampling plan
while the other under 𝑛−𝑘 failures plan. To a likelihoodist,
the stopping rule is irrelevant, because the likelihoods are
proportional (i.e., the likleihood ratio is the same). We
may also say that p-values violate the likelihood principle
that states the two studies yielding the same data and
using the same probabilistic model must have equivalent
measurements of the strength of the evidence in those
data. This lack of dependence on the stopping rule chosen
is seen by frequentists as a weakness, because it implies
that procedures have no frequentist error guarantees. By
likelihoodists, however, this lack of dependence is seen as a
strength, because inferences will be invariant to seemingly
irrelevant considerations like why an experimenter chose
to end an experiment.

90



0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0.
05

0.
10

0.
15

thetas

de
ns

ity

n=50
n−y=50−30

Figure 5.10: Likelihood functions under two sampling
plans are proportional.

5.6 Hypothesis testing (J. Neyman + E.
Pearson)

Jerzy Neyman and Egon Pearson introduced hypothesis test-
ing as an alternative to Fisher’s significance testing because
they wanted a more structured and repeatable decision-making
framework for statistical inference. Neyman and Pearson found
Fisher’s approach unsatisfactory because it lacked a formal
decision-making framework and control over long-term error
rates. Their approach focused on decision rules rather than just
measuring evidence (see the comparison in the Table 5.1).

Neyman-Pearson concerns over p-values

• No decision rule. Fisher viewed the p-value as a
continuous measure of evidence against the null hy-
pothesis, but he did not define a strict cutoff for
decision-making. Scientists often had to subjectively
decide whether a p-value was “small enough”. Ney-
man and Pearson argued that this approach was too
ambiguous and lacked a repeatable rule for making
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conclusions.

• No alternative hypothesis. Fisher only focused on
testing whether 𝐻0 was likely or not but didn’t ex-
plicitly consider an alternative hypothesis. Neyman
and Pearson argued that real-world decisions require
comparing two competing claims.

• No systematic error control. Fisher’s p-value does
not control the probability of making wrong deci-
sions over many repeated experiments. Neyman and
Pearson wanted a method that systematically con-
trolled errors (false positives and false negatives).
They emphasized statistical power to minimize false
negatives. Neyman and Pearson were focused on
practical applications, like quality control in man-
ufacturing or medical trials. Fisher’s approach
worked well for one-time scientific investigations but
wasn’t ideal for situations where decisions had to
be made repeatedly. They wanted a method that
could provide reliable long-term decision-making,
minimizing false conclusions over multiple trials.

Together, Fisher’s method was designed more for ex-
ploratory research, where scientists assess how much ev-
idence data provides. Neyman and Pearson wanted a
method that worked consistently for decision-making, es-
pecially in industry and applied sciences.

The Neyman-Pearson framework of hypothesis testing is a for-
mal and rigorous approach to statistical decision-making. In
hypothesis testing, we start with two competing claims or hy-
potheses:

• Null Hypothesis (𝐻0): This represents the default as-
sumption, usually stating that there’s no effect, no dif-
ference, or no relationship. For example, “the coin is
fair.”

• Alternative Hypothesis (𝐻1): This represents the claim
that contradicts the null hypothesis, typically suggesting
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that there’s some effect, difference, or relationship. For
example, “the coin is biased.”

For each hypothesis, we want to understand what kind of data
(or sample statistics) we would expect to observe if the hypoth-
esis were true. This leads to the idea of comparing data under
two sampling distributions:

• Sampling Distribution under 𝐻0: When we assume that
the null hypothesis 𝐻0 is true, the distribution of the test
statistic (such as the sample mean, sample variance, or
some other statistic) follows a certain distribution. This
is the null distribution.

• Sampling Distribution under 𝐻1: Similarly, if we assume
the alternative hypothesis 𝐻1 is true, the distribution of
the same test statistic will differ in some way. This is the
alternative distribution.

These distributions are different because the underlying as-
sumptions about the data are different depending on which hy-
pothesis is true. For example, under 𝐻0, the data might come
from a normal distribution with a certain mean and variance
while under 𝐻1 the data might come from a normal distribution
with a different mean or variance (or even a completely differ-
ent type of distribution). The two distributions help us assess
the likelihood of the observed data under each hypothesis, and
the goal is to decide which hypothesis is more consistent with
the data. To account for the error in the decision making, we
specify two error rates that define a region of rejection for the
two hypotheses:

• Type I error (false positive rate) – “an innocent person is
convicted” – accepting 𝐻1 when 𝐻0 is true

• Type II error (false negative rate) – “a guilty person is
not convicted” – accepting 𝐻0 when 𝐻1 is true.

Nowadays this interpreted as rejecting 𝐻0 when it is actually
true and failing to reject 𝐻0 when 𝐻1 is actually true.

Consider again our coin tossing example. We specify the null
hypothesis as 𝜃 = 0.5 and the alternative hypothesis as 𝜃 = 0.65.
We specify 𝛼 = 0.05 and samples size 𝑛 = 50, which gives
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Figure 5.11: Something

us 𝛽 = 0.49 so that the power of the test is 51%. This is
extremely low, but for the demonstration purpose, we ignore it
for now. We will discuss power / study planning in the next
lecture. Given our set-up, we are prepared to make a decision:
If the data falls into the rejection region of 𝐻0, we accept 𝐻1;
otherwise accept 𝐻0. Importantly, accepting a hypothesis does
not mean that we believe in it, but only that we ACT AS IF
it were true. Referring to our example: if I act AS IF 𝐻0 was
true, then I will be wrong no more than 49% of the time in the
long run, given than 𝐻1 is true.

This means that we can be either wrong or not when accept-
ing a hypothesis. Likewise, the hypothesis itself can be either
true or false. The specified error rates control how often we
are wrong in relation to the pre-specified null and alternative
hypotheses (not in general). They say nothing about the hy-
pothesis itself. The probability a hypothesis being true can
only be derived from Bayes’ Rule. This was was unsatisfac-
tory to both the Fisher and Neyman–Pearson camps due to
the explicit use of subjectivity in the form of the prior prob-
ability. Fisher’s strategy is to sidestep this with the p-value
(an objective index based on the data alone) followed by induc-
tive inference, while Neyman–Pearson devised their approach
of inductive behaviour.
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Table 5.1: Fisher vs. Neyman-Pearson: Key Differences.

Feature Fisher’s Approach
Neyman-Pearson
Approach

Purpose Measures evidence
against 𝐻0

Makes a decision
(accept/reject)

Hypotheses Only 𝐻0 (no 𝐻1) Both 𝐻0 and 𝐻1
p-value Used as a measure

of strength
Used to control false
positive rate

Error
Consider-
ation

No explicit error
control

Controls Type I and II
errors

Decision
Rule

Flexible Pre-determined cutoffs

𝑓 ∶ (𝛿, 𝑛, 𝛼) ↦ (1 − 𝛽) (5.3)

Statistical power is a function of effect size, sample size, and
significance level.

Types of power when assuming fixed significance level:

• a prior power analysis 𝑛 = 𝑓(𝛿, (1−𝛽), 𝛼) – aims to quan-
tify sample size when assuming true effect size and desired
power.

• a (post-hoc) sensitivity power analysis 𝛿 = 𝑓(𝑛, (1−𝛽), 𝛼)
– aims to quantify effect size when assuming sample size
and power. For example, “this sample size was sufficient
to detect the effect size X with sufficient power (e.g.,
80%)”.

• a post-hoc power analysis (1 − 𝛽) = 𝑓( ̂𝛿, 𝑛, 𝛼) – aims to
quantify power once effect size is estimated and sample
size is fixed. It is equivalent with the p-value (no new
information).

Note

The smallest effect size of
interest (SESOI) is the min-
imum magnitude of an effect

that is considered practically
or scientifically meaningful in
a given context. Ideally, if out-
comes were measured on the
same raw scales in all stud-

ies. If this is not possible, then
standardized effect sizes are of-
ten the second best option.

When high-powered study is
unfeasible?

In many fields, it is practi-
cally impossible to conduct a

high-powered study. What
should one do in this situ-
ation? When reporting re-
sults that are likely based on
an underpowered study, the

best approach is to (i) sim-
ply report estimates with confi-
dence intervals and not make
binary decisions like “effect
present/absent”, (ii) openly ac-

knowledge the power limita-
tion, (iii) attempt to conduct a
direct replication of the effect
to establish robustness, and
(iv) attempt to synthesize the

evidence from existing knowl-
edge (Cumming 2014).
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5.6.1 Type M and S error

There are two other types of error beyond Type I and II error.
These are Type M(agnitude) and S(ign) error, which are
both closely related to statistical power.

• Type S error: the probability that the sign of the effect
is incorrect (e.g., positive instead of negative), given that
the result is statistically significant.

• Type M error: the probability that the effect size estimate
from a study is larger in magnitude than the true effect
size, given that the result is statistically significant. This
error is more likely when statistical power is low, leading
to an overestimation of effects in published research.

When power is low, even statistically significant results might
be misleading, especially when the significant effect is an overes-
timate (Type M error). This is important in the context of pub-
lication bias – where the original published estimates based on
low-powered studies do not replicate. A useful way to inspect
small-study effects is through funnel plots (in meta-analysis1).
A funnel plot is a scatter plot of the studies’ observed effect sizes
on the x-axis against a measure of their power (or standard er-
ror) on the y-axis.2 Estimates obtained from low-powered stud-
ies tend to be overestimated (the lower part of the funnel), and
as power goes up (or standard error goes down), the effect esti-
mates start to cluster tightly around the true value of the effect.
Publication bias leads to an asymmetrical funnel plot, where
small studies with non-significant results are missing (?@fig-
funnel). When smaller studies report only large, significant
effects, it increases the likelihood of Type M errors, inflating

1Meta-analysis is a statistical technique used to combine and analyze re-
sults from multiple independent studies on the same topic to estimate
an overall effect size. It helps increase statistical power, improve pre-
cision, and identify patterns or inconsistencies across studies. By sys-
tematically reviewing and synthesizing data, meta-analysis provides a
more reliable and generalizable conclusion than individual studies alone.
Common tools in meta-analysis include forest plots (to visualize effect
sizes) and funnel plots (to check for publication bias).

2Usually, the y-axis in funnel plots is inverted (meaning that “higher”
values on the y-axis represent lower standard errors).
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the perceived effect size in the literature. A symmetrical fun-
nel plot suggests lower risk of Type M errors, while asymmetry
signals potential bias and overestimation.

P-values in the context of evidential framework

The concept of a null hypothesis is used differently in two
approaches to statistical inference presented by Fisher vs
Neyman-Pearson. Acccording to Fisher in the significance
testing framework, a null hypothesis is rejected if the ob-
served data are significantly unlikely to have occurred if
the null hypothesis were true. In this context, p-value rep-
resents the strength of evidence. In the hypothesis test-
ing approach of Neyman and Pearson, a null hypothesis
is contrasted with an alternative hypothesis, and the two
hypotheses are distinguished on the basis of data, with
certain error rates. In this context, p-value represents
the probability that a particular study design will gener-
ate misleading evidence (i.e, the type I error) in relation
to the alternative hypothesis. Importantly, there is no
strength of evidence in the hypothesis testing framework
and converesely there is no probability of observing mis-
leading evidence in the significance testing framework. As
a consequence, very often the researchers merge these two
approaches when interpreting p-values.

Significance testing and Bayes’ rule

What is the probability of a hypothesis to be true when a
significant result is obtained? To calculate that we refer
to the Bayes’ rule:

𝑃𝑟(𝑡𝑟𝑢𝑒|+) = 𝑃𝑟(+|𝑡𝑟𝑢𝑒) × 𝑃𝑟(𝑡𝑟𝑢𝑒)
𝑃𝑟(+)

= 𝑃𝑟(+|𝑡𝑟𝑢𝑒) × 𝑃𝑟(𝑡𝑟𝑢𝑒)
𝑃𝑟(+|𝑡𝑟𝑢𝑒) × 𝑃𝑟(𝑡𝑟𝑢𝑒) + 𝑃𝑟(+|𝑓𝑎𝑙𝑠𝑒) × 𝑃𝑟(𝑓𝑎𝑙𝑠𝑒)

Let us now assume we perform hypothesis testing with
𝛼 = 0.05 and 1 − 𝛽 = 0.80. We do not know the base
rate of a hypothesis to be true. Nevertheless, it must
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be rather low. For the demonstration purpose, let’s say
𝑃𝑟(𝑡𝑟𝑢𝑒) = 10. With these assumptions, the 𝑃𝑟(𝑡𝑟𝑢𝑒|+)
is:

# power of 80% with low base rate
fp_rate <- 0.05
tp_rate <- 0.8
true_base <- .1
false_base <- 1 - true_base

round(tp_rate * true_base / (tp_rate * true_base + fp_rate * false_base), 2)

[1] 0.64

If we increase 1 − 𝛽 = 0.95, then the 𝑃𝑟(𝑡𝑟𝑢𝑒|+) is:

# power of 95% with low base rate
fp_rate <- 0.05
tp_rate <- 0.95
true_base <- .1
false_base <- 1 - true_base

round(tp_rate * true_base / (tp_rate * true_base + fp_rate * false_base), 2)

[1] 0.68

The difference is barely noticible. In other words, well-
powered study won’t tell us much if the hypothesis is poor.

5.6.2 Neyman-Pearson Lemma

The Neyman-Pearson Lemma is a fundamental result in statis-
tical hypothesis testing that provides a method for construct-
ing the most powerful test for a given size (false positive rate).
Specifically, it applies to simple hypothesis tests where both
the null hypothesis 𝐻0 and the alternative hypothesis 𝐻1 are
completely specified.

Formally, suppose we have observations 𝑋 with a probability
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density function (PDF) under two hypotheses:

• Null hypothesis (𝐻0): 𝑓0(𝑋);
• Alternative hypothesis (𝐻1): 𝑓1(𝑋).

The Neyman-Pearson Lemma states that the most powerful
test of size 𝛼 rejects 𝐻0 in favour of 𝐻1 if the likelihood ratio
exceeds a certain threshold 𝑘:

Λ(𝑋) = 𝑓1(𝑋)
𝑓0(𝑋) > 𝑘,

where 𝑘 is chosen such that the test has a pre-specified signifi-
cance level 𝛼:

𝑃(Λ(𝑋) > 𝑘|𝐻0) = 𝛼
This means that among all tests with the same false positive
rate 𝛼 the likelihood ratio test (LRT) is the most powerful, i.e.,
it maximizes the probability of correctly detecting 𝐻1 when it
is true.

The Neyman-Pearson Lemma applies directly to simple hy-
potheses, but in many practical scenarios, at least one of the
hypotheses is composite (i.e., it contains multiple possible pa-
rameter values). This leads to the Likelihood Ratio Test
(LRT), which extends this idea to composite hypotheses by
using maximum likelihood estimation. In such cases, a frequen-
tist approach of LRT is used for hypothesis testing.

Note

The (generalized) likelihood ratio test (GLRT) extends
the Neyman-Pearson framework by comparing the maxi-
mum likelihood estimates (MLEs) under the null and al-
ternative hypotheses. It is defined as:

Λ(𝑋) =
sup𝜃∈Θ1

𝐿(𝜃 ∣ 𝑋)
sup𝜃∈Θ0

𝐿(𝜃 ∣ 𝑋)
where 𝐿(𝜃 ∣ 𝑋) is the likelihood function of the data given
parameter 𝜃, Θ0 represents the parameter space under 𝐻0,
Θ1 represents the parameter space under 𝐻1. Add that
models must be nested.
The decision rule is:
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Λ(𝑋) > 𝑘 ⇒ Reject 𝐻0

where the threshold 𝑘 is chosen based on the desired sig-
nificance level 𝛼.
Under regularity conditions, Wilks’ theorem states that
for large samples, the statistic:

−2 log Λ(𝑋)

follows approximately a chi-square (𝜒2) distribution with
degrees of freedom equal to the difference in the number
of free parameters between 𝐻0 and 𝐻1.
This framework is widely used in frequentist hypothesis
testing across various statistical models.

5.7 Relevance to Open Science

While frequentist statistics has many strengths, some aspects
of its application have contributed to the replicability crisis.
Here are a few criticisms, particularly from the perspective of
Open Science:

1. P-Hacking and Selective Reporting:

• One of the most significant criticisms of frequen-
tist statistics is p-hacking, where researchers may
manipulate their analysis to achieve a statistically
significant p-value (typically less than 0.05). This
might involve selective reporting of data, changing
statistical methods until they yield the desired re-
sults, or even stopping data collection early when
p-values appear significant. These practices are fa-
cilitated by a focus on achieving “statistical signifi-
cance” rather than reporting full, nuanced findings.

• In open science, there’s an emphasis on pre-
registration of studies (i.e., committing to a
methodology before conducting the research) and
sharing raw data. This helps prevent such behaviors,
but the pressure for significant results in frequentist
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analyses has historically led to questionable research
practices, contributing to the reproducibility crisis.

2. Over-reliance on P-values:

• Frequentist statistics often centers on p-values as a
measure of evidence. However, this focus on arbi-
trary thresholds (e.g., p < 0.05) has been criti-
cized for being misleading. Researchers may treat p-
values as a binary “pass/fail” criterion for the truth
of a hypothesis, rather than as part of a more nu-
anced understanding of the data. This leads to a
misinterpretation of results, for example, a p-
value of 0.049 might be treated as significant, while
a p-value of 0.051 is dismissed, even though the dif-
ference is small and possibly not meaningful.

• This reliance on p-values can distort scientific find-
ings, especially when replication studies, which often
yield slightly different results, fail to reproduce origi-
nal findings because they are outside of this arbitrary
threshold.

3. Publication Bias:

• Publication bias is the tendency for journals to
favor publishing studies with statistically significant
findings. Frequentist statistics, due to its focus on p-
values, has contributed to this bias by emphasizing
“significant” results over null findings (i.e., results
that do not show an effect). As a result, many non-
significant studies are not published, and those that
are may be subject to selective reporting (e.g., only
publishing certain variables or outcomes).

• Open science has tried to address this issue by advo-
cating for open access, preprints, and the shar-
ing of all research outputs, including null results.
However, the inherent biases in frequentist methods,
particularly in how results are treated or discarded
based on significance, have played a role in perpetu-
ating the reproducibility crisis.

4. Misuse of Statistical Significance:
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• There is often a misunderstanding of statistical
significance as implying practical or scientific
significance. Frequentist methods, when not prop-
erly interpreted, can suggest that a statistically
significant result is meaningful or important, even if
the effect size is trivial or the study lacks real-world
relevance.

• This contributes to the reproducibility crisis be-
cause many published studies with “statistically
significant” results are later found to have little
to no meaningful impact when reproduced, rais-
ing questions about the relevance of statistical
significance in some fields.

5. Underpowered Studies:

• Many frequentist studies suffer from being under-
powered, meaning they don’t have a large enough
sample size to reliably detect an effect if one exists.
This is often due to poor planning or resource con-
straints, and the resulting studies may yield false
positives or fail to detect meaningful effects. Under-
powered studies are more likely to produce results
that don’t replicate, contributing to the growing con-
cerns around reproducibility.

• Open science initiatives like preregistration and
the emphasis on sample size planning can help miti-
gate this issue, but it remains a concern for frequen-
tist statistics, especially when researchers conduct
studies without adequate power analysis or rely on
convenience sampling.

6. “Null Hypothesis Significance Testing” (NHST)
Problems:

• The Null Hypothesis Significance Testing
(NHST) framework, central to frequentist statis-
tics, is criticized for fostering a binary thinking
approach (i.e., results are either “significant” or
“not significant”). This oversimplifies complex
scientific phenomena and encourages dichotomous
thinking about hypotheses. As a result, findings
that don’t fit neatly into this framework are often
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dismissed or ignored, reducing the overall quality of
scientific understanding.

• The NHST approach often obscures the underlying
uncertainty about estimates, and researchers may
report misleading results, thinking that a rejection
of the null hypothesis proves a theory true.

5.8 Summary

Frequentist statistics focuses on decision-making and error, em-
phasizing the long-run behavior of estimators and tests under
repeated sampling. It relies on the concept of the sampling dis-
tribution, without assigning probabilities to parameters them-
selves, and aims to minimize errors like Type I and Type II. In
contrast, Bayesian statistics centers on what to believe, incor-
porating prior knowledge and updating beliefs with new data
via Bayes’ rule.3 It might be more effective to frame the dis-
tinction by stating that Bayesian inference incorporates prior
information, while frequentist inference incorporates the infor-
mation about the sample space (which may depends on subjec-
tive intentions). Finally, likelihood is focused on the strength of
evidence, quantifying how well different hypotheses explain the
observed data without incorporating prior beliefs or decision-
making strategies. Each approach serves a distinct purpose in
understanding and analyzing data.

5.9 Recommendations

If you are interested in learning about probability theory, the
open course at MIT by Prof. J. Tsitsiklis is absolute gold Intro-
duction to probability.

3The Bayesian Decision Rule is a decision-making approach that uses
probabilities to guide decisions under uncertainty. It incorporates
Bayes’ theorem to update the probability of different outcomes based on
new evidence or information, and it aims to minimize decision-making
risk or cost.
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6 Example

In this section, we apply the three paradigms to a hypothetical
drug testing scenario in order to highlight their unique aspects
and similarities.

A medical researcher is studying whether a new
drug improves recovery rates for a certain illness
compared to a placebo. The trial includes 200 par-
ticipants, randomly split into two groups of 100: one
group receives the drug, and the other receives a
placebo. After the treatment period, the recovery
rates are recorded for both groups.

6.1 Likelihood

The likelihood of observing 𝑋1 = 𝑘1 recoveries in 𝑛1trials, as-
suming a probability of success 𝜃1 follows the binomial proba-
bility mass function:

𝑝(𝑋1 = 𝑘1 ∣ 𝜃1) = (𝑛1
𝑘1

)𝜃𝑘1
1 (1 − 𝜃1)𝑛1−𝑘1 (6.1)

Similarly, for the placebo group, the likelihood of observing
𝑋2 = 𝑘2 recoveries in 𝑛2 trials, with success probability 𝜃2,
is:

𝑝(𝑋2 = 𝑘2 ∣ 𝜃2) = (𝑛2
𝑘2

)𝜃𝑘2
2 (1 − 𝜃2)𝑛2−𝑘2 (6.2)

Since the two groups are independent, the joint likelihood func-
tion is simply the product of these two binomial likelihoods:

𝑝(𝑘1, 𝑘2 ∣ 𝜃1, 𝜃2) = (𝑛1
𝑘1

)𝜃𝑘1
1 (1 − 𝜃1)𝑛1−𝑘1 × (𝑛2

𝑘2
)𝜃𝑘2

2 (1 − 𝜃2)𝑛2−𝑘2

(6.3)
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This defines a two-parameter model, leading to a two-
dimensional likelihood function.

To simplify the model, we can condition on the total number of
observed recoveries, 𝑍 = 𝑋1 + 𝑋2, which allows us to express
the problem in terms of the odds ratio between the two groups.
Given that 𝑍 is fixed, the conditional distribution of 𝑋1 ∣ 𝑍
follows a hypergeometric-like structure, but it can be rewritten
in binomial form using the odds ratio:

𝜓 = 𝜃1/(1 − 𝜃1)
𝜃2/(1 − 𝜃2) (6.4)

This leads to a new binomial probability function:

𝑝(𝑘1 ∣ 𝑧, 𝑛1, 𝑛2, 𝜓) = ( 𝑧
𝑘1

) ( 𝑛1𝜓
𝑛1𝜓 + 𝑛2

)
𝑘1

(1 − 𝑛1𝜓
𝑛1𝜓 + 𝑛2

)
𝑧−𝑘1

(6.5)

Conditional likelihood

When you condition on the
sum 𝑍 = 𝑋 + 𝑌 , the distri-
bution of 𝑋 given 𝑍 will de-
pend on the total 𝑍 as well
as the relative relationship be-
tween 𝑋 and 𝑌 . The odds
ratio will now reflect how 𝑋
and 𝑌 are distributed given
their fixed sum, and it will
no longer be a simple compar-
ison between their raw (inde-
pendent) odds. In our case,
the distribution 𝑝(𝑋 ∣ 𝑍) de-
pends on the true odds ratio
but also on the total 𝑍. So the
relationship between 𝑋 and
𝑌 becomes somewhat “com-
pressed” or constrained when
conditioned on the sum (i.e.,
the sample space is altered),
leading to the reduction in the
odds ratio from 1.9 to 1.5.

Suppose we observe 𝑘1 = 45 recoveries in the drug group and
𝑘2 = 30 in the placebo group, with both groups having 𝑛1 =
𝑛2 = 100 participants. The estimated odds ratio is:

𝑂𝑅 =
̂𝜃1/(1 − ̂𝜃1)
̂𝜃2/(1 − ̂𝜃2)

= 0.45/(1 − 0.45)
0.30/(1 − 0.30)

= 1.90

(6.6)

Finally, we visualize the likelihood function and compare two
hypotheses: the null hypothesis 𝐻0 ∶ 𝜓 = 1 versus an alterna-
tive 𝐻1 ∶ 𝜓 = 1.5 (see Figure 6.1).

Computing the values, we obtain the likelihood ratio of 4.53,
which suggests rather weak evidence for the data being sup-
ported by the alternative hypothesis. The odds of recovering
in the drug groups is 1.5 times the odds of recovering in the
placebo group. In our interpretation we should also consider
1/8 support interval, which in this case overlaps with the re-
gions of the odds ratio < 1.
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Figure 6.1: Conditional likelihood function

6.2 Frequentists

To apply frequentist inference, we need the sampling distribu-
tion of the odds ratio (OR) before collecting data. We simulate
the null distribution under the assumption that there is no dif-
ference between the two binomial proportions, i.e., 𝜃1 = 𝜃2. We
consider two cases:

• 𝜃1 = 𝜃2 = 0.5 and

• 𝜃1 = 𝜃2 = 0.3

to explore how the sampling distribution behaves under these
two assumptions.

The odds ratio (OR) is computed as:

𝑂𝑅 =
̂𝜃1/(1 − ̂𝜃1)
̂𝜃2/(1 − ̂𝜃2)

(6.7)

To normalize the distribution and center it at 0, we compute
the log odds and divide it by the standard error (SE):

𝑆𝐸 = √ 1
𝑘1

+ 1
𝑛1 − 𝑘1

+ 1
𝑘2

+ 1
𝑛2 − 𝑘2

(6.8)
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Figure 6.2: The null distribution of odds ratio on a log scale
obtained with simulations.

The sampling distribution of log(𝑂𝑅) approximates a standard
normal distribution:

𝑙𝑜𝑔(𝑂𝑅) ∼ 𝑁(0, 1) (6.9)

Alternatively, it can be approximated by a t-distribution:

𝑙𝑜𝑔(𝑂𝑅) ∼ 𝑡(𝜈) (6.10)

where the degrees of freedom (𝜈) are determined based on the
Wald test:

𝜈 = 𝑛1 + 𝑛2 − 2 (6.11)

We now compute the p-value for our data using simulated null
distribution (Listing 6.1) and compare it with the result from
R’s built-in prop.test function (Listing 6.2).

p-value (z dist) 0.029295
p-value (t dist) 0.03047505
p-value (sim 0.5) 0.02827
p-value (sim 0.3) 0.02857

2-sample test for equality of proportions without continuity correction
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Listing 6.1 Calculating p-value based on simulated null distri-
bution.

k2 <- 30 # assuming control group
k1 <- 1.5 * k2 # assuming experimental new group
n1 <- 100
n2 <- 100

# Calculate observed log odds ratio and its standard error
p_hat1 <- k1 / n1
p_hat2 <- k2 / n2
odds1 <- p_hat1 / (1 - p_hat1)
odds2 <- p_hat2 / (1 - p_hat2)
or <- odds1 / odds2
lor <- log(or)
se <- sqrt((1 / k1) + (1 / k2) + (1 / (n1 - k1)) + (1 / (n2 - k2)))
t_lor <- lor / se
p_value_z <- 2 * (1 - pnorm(abs(t_lor), 0, 1))
p_value_t <- 2 * (1 - pt(abs(t_lor), n1+n2-2))
p_value_sim_50 <- sum(abs(null_dist_50) >= abs(t_lor)) / length(null_dist_50) # Two-tailed test
p_value_sim_30 <- sum(abs(null_dist_30) >= abs(t_lor)) / length(null_dist_30) # Two-tailed test

cat("p-value (z dist)", p_value_z, "\n",
"p-value (t dist)", p_value_t, "\n",
"p-value (sim 0.5)", p_value_sim_50, "\n",
"p-value (sim 0.3)", p_value_sim_30, "\n"
)

data: c(k1, k2) out of c(n1, n2)
X-squared = 4.8, df = 1, p-value = 0.02846
alternative hypothesis: two.sided
95 percent confidence interval:
0.01743049 0.28256951
sample estimates:
prop 1 prop 2

0.45 0.30

Our simulated p-value closely matches the result from
prop.test, confirming the validity of our approach.
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Listing 6.2 Test of equal proportions as implemented in R.

# Test of Equal or Given Proportions
# to check if we obtain the same p-value
# normal approximation to the binomial distribution (a z-test)
prop.test(x = c(k1, k2), n = c(n1, n2), correct = FALSE, alternative="two.sided")

6.2.1 Sensitivity power analysis

Normally, we would perform a prior power analysis to deter-
mine the required sample size before the study begins. How-
ever, this step was not performed in this case.

What we can do now is conduct a post-hoc sensitivity power
analysis. The effect size obtained is represented by the log-odds
ratio (0.65), which reflects the difference between the propor-
tions ̂𝑝1 and ̂𝑝2.

Based on this effect size, the current sample size was suffi-
cient to detect the observed effect with a minimum power of
58.41%.

In hindsight, the study was underpowered, indicating that we
should have designed it differently to ensure adequate statistical
power.

6.2.2 Obtaining Maximum Likelihood Estimate using
optim

An alternative approach to finding the maximum likelihood es-
timate (MLE) is to use numerical optimization. By utilizing
optimization techniques, we can numerically maximize the like-
lihood function to estimate the parameters of our model. In
this case, we can leverage the optim function to perform this
task efficiently (Listing 6.3).

Optimized theta1: 0.4500001

Optimized theta2: 0.3000006
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Listing 6.3 Obtaining Maximum Likelihood Estimate using
optim.

# Define the log-likelihood function (to minimize negative log-likelihood)
loglik_fun <- function(par) {

# Extract parameters from the vector
k1 <- 45 # Fixed data points for k1
k2 <- 30 # Fixed data points for k2
n1 <- 100 # Fixed data points for n1
n2 <- 100 # Fixed data points for n2
theta1 <- par[1] # First parameter (theta1)
theta2 <- par[2] # Second parameter (theta2)

# Calculate log-likelihood for x and y
loglik <- dbinom(k1, n1, theta1, log = TRUE) +
dbinom(k2, n2, theta2, log = TRUE)

# Return the negative log-likelihood (since optim minimizes, we negate it)
return(-loglik)

}

# Set initial guesses for the parameters
par <- c(theta1 = 0.5, theta2 = 0.5)

# Use optim to minimize the negative log-likelihood
result <- optim(par = par, fn = loglik_fun, method = "L-BFGS-B",

lower = c(0.01, 0.01), upper = c(0.99, 0.99), hessian = TRUE)

Once the maximum likelihood estimates are obtained, we can
compute the variance-covariance matrix. This matrix is cru-
cial for assessing the precision and correlation between the es-
timated parameters. The variance-covariance matrix can be
approximated by the inverse of the Hessian matrix, which rep-
resents the second derivative of the log-likelihood function. The
Hessian matrix is often computed as part of the optimization
procedure, and its inverse provides an estimate of the parame-
ter uncertainties.

theta1 theta2
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theta1 404.0438 0.0000
theta2 0.0000 476.1973

Once we have the variance-covariance matrix, we can use it
to compute the 95% confidence interval for the parameter esti-
mates.

Odds Ratio: 1.909086

95% CI for Odds Ratio: 1.067289 to 3.414828

6.2.3 Simulating confidence interval with
bootstrapping

In addition to using the variance-covariance matrix for confi-
dence intervals, we can also simulate confidence intervals us-
ing the bootstrapping method. Bootstrapping is a powerful
resampling technique that allows us to estimate the distribu-
tion of a statistic by repeatedly sampling from the observed
data with replacement. The advantage of bootstrapping is that
it does not rely on parametric assumptions, making it a non-
parametric method for estimating the uncertainty of a statistic.
It is particularly useful when the underlying distribution of the
data is unknown or when the model is complex. By simulating
confidence intervals using bootstrapping, we can obtain more
robust estimates of parameter uncertainty, especially in cases
where traditional methods might be challenging to apply. The
bootstrapped confidence interval for our hypothetical scenario
is depicted in the Figure 6.3.

6.3 Bayesian

In the Bayesian analysis, we begin by specifying the prior distri-
bution of the recovery rates for each group independently. To
avoid introducing bias, we assume the same prior distribution
for both groups.
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Figure 6.3: Bootstrapped odds ratio

Next, we obtain the posterior distribution of the recovery rates
for each group (see Figure 6.4). Using this posterior distribu-
tion, we apply a sampling technique to estimate the posterior
distribution of the odds ratio.

To summarize the posterior distribution, we use the 95% high-
est posterior density interval (HPDI). To test our hypothesis,
we calculate the Bayes Factor at the odds ratio of 1 and deter-
mine the proportion of the posterior interval that lies within
the Region of Practical Equivalence (ROPE), defined as [0.84,
1.2].
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Figure 6.4: Bayesian analysis of group proportion.
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Figure 6.5: Samples of the posterior odds-ratio distribution.

6.4 Summary

Table 6.1: Two conceptual distinctions in the practice of data
analysis.

Frequentist Bayesian
Hypothesis test p-value (null

hypothesis
significance
testing)

Bayes Factor

Estimation with
uncertainty

MLE with
confidence
interval

Posterior
distribution with
highest density
interval
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