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Abstract

Episodic memory is shaped by event segmentation, which divides continuous experience into

discrete episodes often marked by temporal gaps. Emotional learning can influence memory

across these boundaries by prioritizing not only threatening events but also related

information that is encoded shortly before or after the emotional episode, which in turn

supports adaptive generalization. However, evidence for such cross-boundary modulation is

mixed, possibly because conventional group-level analyses can mask systematic individual

variability in the effects of emotional learning on nearby neutral memories.

We reanalyzed data from a large-sample study (N = 285) combining emotional and

episodic learning that had previously shown no consistent retroactive or proactive

enhancement across event boundaries at the group level. Young adults incidentally encoded

neutral images from two categories (animals, tools) across three temporally separated

phases: pre-conditioning, conditioning, and post-conditioning. One category was partially

reinforced with mild electric shocks during conditioning to create a category-level threat

association. Memory was tested 24 hours later using a surprise old–new recognition task.

A hierarchical Bayesian recognition model with a latent-mixture component revealed

two profiles of memory modulation. One showed declining memory across phases, with

modest enhancement limited to items from the shock-predictive category encoded during

conditioning. The other showed strongest memory for items encoded during conditioning,

with substantial category-selective enhancement extending into post-conditioning. These

findings suggest that proactive, but not retroactive, enhancement is most evident in

individuals whose memories are strongly anchored to the emotional episode, indicating

integration of threat-related information across temporal boundaries.

Keywords: episodic memory, emotional learning, threat conditioning, event

segmentation, memory recognition



EMOTIONAL LEARNING AND MEMORY PRIORITIZATION 3

Individual differences in emotional learning–driven prioritization of neutral episodic

memories across temporal boundaries

Introduction

Human memory is not merely a passive record of experience, but a highly adaptive

system that selectively filters information to guide future behavior (Nairne et al., 2007;

Shohamy & Adcock, 2010). Emotionally salient experiences, which are relevant to survival,

are often prioritized for long-term storage (Talmi, 2013; Williams et al., 2022). For example,

while routine aspects of a forest hike – trees, trail markers, birdsong – may fade quickly, a

threatening encounter with a bear is likely to persist in memory. It may also be adaptive to

remember related cues encountered nearby in time, such as the rustling of leaves heard

minutes before the bear appeared or claw marks noticed on the way back home. Such cues

can later serve as warning signals, even though they were encoded in safe contexts.

Emotionally significant experiences may therefore enhance episodic memory for both the

emotional and neutral events, supporting adaptive generalization – the capacity to infer

danger from memories acquired without direct aversive experience (Baczkowski et al., 2023).

Emotional learning is known to strengthen episodic memory for the aversive episode

itself. The bear example illustrates that a previously neutral cue can become threatening, as

described by Pavlovian threat conditioning (LeDoux, 2000; Rescorla, 1988). This associative

learning not only links cues to aversive outcomes but also enhances episodic memory for the

aversive experience via the mechanisms of prediction error and arousal-related modulation of

amygdala–hippocampus interactions (de Voogd et al., 2016b; Kalbe & Schwabe, 2021b;

Rouhani et al., 2023). Yet such enhancement may not extend to neutral events occurring

close in time but outside the emotional context. This limitation may arise from event

segmentation – the cognitive parsing of continuous experience into discrete episodes (Kurby

& Zacks, 2008; Zacks & Swallow, 2007), often marked by perceptual shifts such as temporal

gaps (Clewett et al., 2025; Clewett & Davachi, 2017; Ezzyat & Davachi, 2010). By isolating

threat from competing experiences of safety (Dunsmoor et al., 2018; Ezzyat & Davachi,

2021), event segmentation may guard against overgeneralization but also constrain the

prioritization effects of emotional learning on neutral events occurring in close temporal
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proximity.

Despite the constraints imposed by event segmentation, several complementary

mechanisms have been proposed to extend emotional memory benefits across temporal

boundaries (Clewett et al., 2019). The first is behavioral tagging, whereby a weak memory is

stabilized if it occurs near a salient event. This relies on synaptic-level tag-and-capture

processes (Ballarini et al., 2009; Frey & Morris, 1997), in which strong emotional

experiences trigger neuromodulatory activity and protein synthesis that consolidate both the

emotional and preceding neutral content (Dunsmoor et al., 2022). A second route is

post-encoding reactivation (Hermans et al., 2016; Loock et al., 2025), in which emotional

events partially reinstate earlier related neutral representations, strengthening their

consolidation through persistent hippocampal–cortical activity or replay (Staresina et al.,

2013; Tambini & Davachi, 2013). A third route, in contrast, enhances memory for

subsequent events through sustained arousal-related brain states, characterized by prolonged

amygdala–hippocampus activity (Clewett & McClay, 2024; Tambini et al., 2016). Together,

these processes may enable emotional learning to prioritize memory for temporally proximal

but separated experiences, thereby supporting adaptive generalization.

However, evidence for such cross-boundary enhancement is mixed. Dunsmoor et al.

(2015) reported that emotional learning prioritized memory for threat-related information

encoded in a neutral context shortly before or after conditioning. In their design combining

emotional and episodic learning, participants incidentally encoded non-repeating, neutral

images of basic-level exemplars from two semantic categories – animals and tools – across

three phases: pre-conditioning, conditioning, and post-conditioning (Figure 1, panel a).

Short breaks between phases marked event boundaries, operationalizing each phase as a

separate memory episode. During conditioning, one category was partially reinforced with

mild electric shocks, establishing a Pavlovian association at the category rather than the

item level (Dunsmoor et al., 2012, 2014). Category-level association enhanced memory for

items from the shock-predictive category encoded during conditioning irrespective of direct

reinforcement, leading to within-category mnemonic generalization. Critically, neutral items

from the shock-predictive category that had been encoded without risk of shock before or
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after conditioning were remembered better 24 hours later, as shown by a surprise old–new

recognition test.

In contrast, Kalbe and Schwabe (2021a) closely replicated the emotional–episodic

learning paradigm in four studies with 285 participants in total but found no consistent

evidence of retroactive or proactive cross-boundary memory strengthening, despite robust

within-phase emotional memory enhancement. One explanation for this discrepancy is that

averaging across participants may mask meaningful individual differences in how emotional

learning affects memory – effects that may be present in some individuals but not others (see

also Bolger et al., 2019; Olsson-Collentine et al., 2020). Individual variability could stem

from differences in learning rate, physiological arousal, or consolidation processes (de Voogd

et al., 2016a; Kalbe & Schwabe, 2020), which may in turn determine whether mechanisms

such as behavioral tagging, post-encoding reactivation, or sustained arousal-related brain

states enable emotional memory benefits to extend across temporal boundaries.

To examine this possibility, we reanalyzed the Kalbe and Schwabe (2021a) dataset

using a model-based framework that captures individual-level estimates of recognition

memory and reveals hidden patterns that group averages can obscure. We adopted the

two-high-threshold (2HT) recognition model (Snodgrass & Corwin, 1988), which

distinguishes memory-based recognition from guessing, to ensure theoretical continuity with

prior work (Dunsmoor et al., 2015). Rather than relying on corrected recognition scores – a

summary metric that assumes a correspondence between hit and false alarm rates – we

implemented the 2HT model in its original probabilistic decision-tree form (Figure 1, panel

b). This allowed us to accommodate the asymmetry in our design between targets (varied

by both phase and category) and lures (varied only by category).

We first fit the 2HT model in a hierarchical Bayesian framework to estimate

recognition memory at both the group and individual levels. Next, we applied data-driven

clustering to explore patterns in individual-level recognition estimates. Finally, to test

whether these patterns reflected meaningful differences in retroactive and proactive effects

of Pavlovian threat conditioning on episodic memory, we extended the model with a

latent-mixture component that probabilistically assigned participants to distinct memory
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profiles (Lee & Stark, 2023). Collectively, these analyses provided an approach more

sensitive to individual variability, moving beyond binary replication outcomes and toward a

more nuanced understanding of how emotional learning affects episodic memory.

Methods

Data source

The present study re-analyzed data from Kalbe and Schwabe (2021a), who

conducted four studies aimed to test retroactive and proactive effects of Pavlovian threat

conditioning on episodic memory. These studies closely replicated the experimental

procedure of Dunsmoor et al. (2015), with minor variations in timing, instructions, and

stimuli. Behavioral data were obtained from a public repository (https://osf.io/qpm3t), with

additional demographic and skin conductance data provided by the corresponding author

upon request.

Data collection procedures

The original protocol was approved by the local ethics committee. All participants

gave written informed consent and received monetary compensation. This re-analysis

required no additional ethical approval. Full methods are reported in Kalbe and Schwabe

(2021a).

Briefly, each study consisted of two sessions approximately 24 hours apart. In session

1, participants incidentally encoded 180 unique neutral images from two semantic categories

(animals and tools) across three separate phases: pre-conditioning, conditioning, and

post-conditioning. In pre- and post-conditioning, participants categorized 60 images per

phase (30 per category), each presented for 2.5 seconds with interstimulus intervals of 6 ± 2

seconds.

During conditioning, participants viewed another set of 60 images (30 per category)

each shown for 4.5 seconds, followed by an 8 ± 2 second fixation, while electrodes for

measuring skin conductance and delivering unpleasant electric shocks were attached. Images

from one category (CS+) were predictive of the shock (US) at a 2/3 contingency, while

images from the other category (CS-) were never paired. The assignment of semantic

categories to CS+ and CS- conditions was pseudo-randomized across participants. On each
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Figure 1

Experimental design and decision tree of old-new recognition judgments according to

two-high-threshold model (2HT).

a)

b)

Note. Panel a: In each phase, participants incidentally encoded 30 unique images each of

animals and tools. During pre- and post-conditioning phases, they categorized images as ani-

mals or tools; in the conditioning phase, one category probabilistically predicted mild electric

shocks, and participants indicated their shock expectancy. About 24 hours later, they com-

pleted a surprise old-new recognition test including all previously seen images and an equal

number of new ones (confidence ratings not shown). Colored borders are illustrative. Visual

elements adapted from flaticon.com (designed by flaticon, juicy_fish, Smashicons) and

freepik.com (designed by freepik, evening_tao, brgfx). Panel b: The two-high-threshold

(2HT) model formalizes old–new recognition judgments (deciding old, ! vs. new, ") as a

probabilistic decision tree involving two cognitive states: detection – a memory-based recog-

nition (#) – and uncertainty leading to guessing old ($). Items are detected as old when they

exceed the old-item threshold, indicating a match of a target to a memory from a specific

encoding phase (e.g., #(old)
1 ). New items are detected as new when an item does not match

to any of the encoding phases (#(new)). Otherwise, the model assumes a guess.
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trial, participants made a binary response indicating whether they expected a shock,

knowing their response would not influence outcomes.

In session 2, participants completed a surprise old-new recognition test with 360

images, in which old images were mixed with an equal number of new images from each

semantic category.

Participants

Data from all available participants (N = 285) were analysed. Demographic data

were available for 277 participants (191 female), aged 18–35 years (mode = 26). Skin

conductance data were available for 272 participants (185 female), all within the same age

range.

Measures

Old-new recognition judgments

Binary recognition judgments (old vs. new) served as the primary outcome variable.

In Study 1, judgments were collected in two steps: an old/new decision followed by a

4-point confidence rating (very unsure, rather unsure, rather sure, and very sure), with a

5-second response window. Consequently, trial counts varied slightly across participants,

with 12 out of 44 participants missing only a few trials (mode = 1). In the other three

studies, participants selected one of four combined memory-confidence responses

(definitely/maybe old or definitely/maybe new) without a time limit. For analysis, responses

were binarized (old vs. new) by collapsing confidence levels, following prior work (Dunsmoor

et al., 2015; Kalbe & Schwabe, 2021a).

Data analysis

Before model fitting, we performed data quality and reproducibility checks. We

visually inspected hits and false alarms (FA) for each participant and reproduced key

analyses from Kalbe and Schwabe (2021a), including overall performance,

repeated-measures ANOVA, and paired t-tests on corrected recognition scores (hit rate

minus FA rate), which are reported in the Supplement.

After confirming data integrity, we fit a Bayesian 2HT model to old-new recognition
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judgments. The baseline model assumed a single generative process for all participants and

formed the basis for participant clustering and a latent mixture extension for subgroup

testing. Graphical representations of both models, including the data-generating processes

and all prior distributions, are provided in Supplementary Figure S1.

Bayesian two-high-threshold (2HT) model of old-new recognition judgments

The 2HT model predicts the number of hits (%(old)
&' ) and FAs (%(new)

&( ) using binomial

likelihoods, where & indexes participants. Hits were collected across six encoding conditions:

' ∈ {1, 2, 3} for CS- and ' ∈ {4, 5, 6} for CS+ items seen pre-, during, and

post-conditioning, respectively. FAs were collected by semantic category only: ( = 1 for CS–

and ( = 2 for CS+.
%

(old)
&' ∼ Binomial()(old)

&' , *
(old)
&' )

%
(new)
&( ∼ Binomial()(new)

&( , *
(new)
&( ),

where *
(old)
&' and *

(new)
&( denote the probabilities of hits and FAs, respectively.

The probability of hits arises from either detection of an old item from condition '

(#(old)
&' ) or, if detection fails, a guess based on the item’s semantic category ($&():

*
(old)
&' =



#

(old)
&' + (1 − #

(old)
&' ) · $&1, if ' ∈ {1, 2, 3}

#
(old)
&' + (1 − #

(old)
&' ) · $&2, if ' ∈ {4, 5, 6}.

The probability of FAs arises from guessing old after detection has failed, i.e., when

participant fails to recognize that an item was never seen during the experiment:

*
(new)
&( = (1 − #

(new)
&( ) · $&( , for ( ∈ {1, 2}.

To ensure identifiability, we adopted the standard 2HT assumption that the probability of

detecting old items (i.e., identifying them based on a memory match) equals the probability

of detecting new items (i.e., identifying them based on the absence of a memory match):

#(new) = #(old) .

In our design, old items were tied to specific encoding phases, yielding separate hit rates for

each phase and allowing estimation of phase-specific detection probabilities (i.e.,

#
(old)
1 , #

(old)
2 , #

(old)
3 ). New items, in contrast, were tied only to a semantic category and had
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to be identified as new by ruling out matches across all encoding phases. To connect

new-item detection to old-item detection, we assumed – consistent with the design logic –

that underlying memories are tied to specific encoding phases and operate independently

across phases. This assumption ensures model identifiability and allows us to express

new-item detection as the product of phase-specific detection probabilities. This way, overall

new-item detection arises from the joint contribution of memory for each phase (i.e.,

correctly identifying a new item as new requires detecting the absence of a memory match

across all three phases):

#
(new)
&( =



#

(old)
&1 #

(old)
&2 #

(old)
&3 if ( = 1,

#
(old)
&4 #

(old)
&5 #

(old)
&6 if ( = 2.

A detection failure occurs when the absence of a memory match is not detected in one or

more phases. For example, a participant may correctly identify that a new item does not

match memories from the pre- and post-conditioning phases but fail to do so for the

conditioning phase, resulting in a detection failure. The probability of a detection failure is

given by the complement:

1 − #
(new)
&( =




1 − #
(old)
&1 #

(old)
&2 #

(old)
&3 , if ( = 1

1 − #
(old)
&4 #

(old)
&5 #

(old)
&6 , if ( = 2.

Accordingly, weak memory for even a single phase may result in a detection failure,

increasing reliance on guessing.

Assuming independence, participant-level memory recognition #&' and guessing $&(

probabilities are expressed as outcomes of a linear combination of the effects of interest,

encoded in a design matrix and its associated weights, with additional adjustments for

procedural variations across studies and for differences related to semantic category.

Specifically, memory recognition probabilities are defined:

logit(#(old)
&' ) = ! (+)

' · ("& + #(+)
[,-.(%]) + /' · 0(#) ,

where ! (+)
' ∈ R1×6 is a row of the design matrix corresponding to condition ', "& ∈ R6×1 are

weights, #(+)
[,-.(%] ∈ R6×1 capture adjustments for between-study variability, and 0(#) ∈ R
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accounts for the semantic category effects (tools vs. animals). The design matrix ! (+) and

its associated hypothesis matrix $(+) = inv(! (+)) isolates the grand mean (+1), phase

comparisons (+2: phase 2 vs. phase 1; +3: phase 3 vs. phase 2), and CS+ vs. CS– contrasts

within each phase (+4–+6 for pre-, during-, and post-conditioning, respectively):

$(+) =

+1 +2 +3 +4 +5 +6





phaseCS−
1 1/6 −1 0 −1 0 0

phaseCS−
2 1/6 1 −1 0 −1 0

phaseCS−
3 1/6 0 1 0 0 −1

phaseCS+
1 1/6 −1 0 1 0 0

phaseCS+
2 1/6 1 −1 0 1 0

phaseCS+
3 1/6 0 1 0 0 1

.

Given the logit space of the model, individual weights "& represent differences on a

log-odds scale (excluding the grand mean). When these log-odds are exponentiated, they

yield odds ratios – an effect size that quantifies how much more likely an event is in one

condition compared to another. For example, a log-odds of 0.18 implies that the odds of

correct recognition in the CS+ condition are 10.18 ≈ 1.2 times higher than in the CS-

condition. Individual weights "& are drawn from a multivariate normal with population-level

means %(+) and covariance !(+). We use weakly informative priors: Normal(0, 1) for most

parameters; Normal(–0.5, 1.5) for the grand mean tailored based on prior predictive checks

of the overall hits; Lewandowski-Kurowicka-Joe (shape = 2) and Gamma (shape = 5, rate

= 10) distributions for the correlation matrix and standard deviations.

Guessing was modeled similarly:

logit($&() = ! (2)
( · (&& + #(2)

[,-.(%]) + /( · 0$,

with hypothesis matrix:

$(2) =

21 22


CS− 1/2 −1

CS+ 1/2 1
.

Here, 21 represents overall guessing and 22 the CS+ vs. CS– difference. Individual weights

&& are again drawn from a multivariate normal, with priors matching those in the recognition
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component: Normal(0, 1) for most parameters and Normal(–0.8, 1.5) for the grand mean

tailored according to prior predictive checks of the overall FAs.

Although we chose the 2HT model for theoretical continuity with prior work

(Dunsmoor et al., 2015), we also assessed its robustness by comparing it with two

alternative accounts of old–new responses: the one-high-threshold (1HT) model and a signal

detection theory (SDT) model (see the Supplement). We compared models using 5-fold

cross-validation stratified by subject and study (i.e., the individual experiments comprising

the dataset). Each model was trained on 80% of the data and tested on the remaining 20%,

with out-of-sample predictive performance measured via expected log predictive density

(ELPD) via the loo R package (Vehtari et al., 2024). Comparisons were based on differences

in ELPD, with higher values indicating better fit; following common guidelines (Vehtari et

al., 2016), differences exceeding twice their standard error were considered meaningful.

Clustering individual variability in memory recognition

To identify clusters of participants based on posterior memory recognition estimates

(i.e., " weights), we applied Kohonen self-organizing maps (SOMs) via the kohonen R

package (Kohonen, 1982; Wehrens & Kruisselbrink, 2018). SOMs project high-dimensional

data onto a 2D grid while preserving topological relationships, such that similar input vectors

are mapped to nearby nodes. We trained a 7x8 hexagonal SOM (no edge wrapping) for

5000 iterations on scaled posterior means, representing each participant as a 6D " vector.

Each vector was mapped to its best matching unit, and all SOM nodes were populated,

indicating a good fit. We then computed a Euclidean distance matrix between node vectors

and applied k-means clustering to group topologically adjacent nodes. The silhouette

method indicated two optimal clusters. This solution was validated by directly clustering the

original " vectors, which again supported a two-cluster structure.

Bayesian two-high-threshold (2HT) model with latent mixture extension

To formally assess participant heterogeneity, we extended the baseline 2HT model

into a hierarchical latent mixture framework (Bartlema et al., 2014; Lee & Stark, 2023),

where each participant is probabilistically assigned to one of two latent groups based on

their observed data. We placed a uniform Beta prior on the group proportion (3), assuming
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no prior preference. Each participant’s recognition weight vector "& is drawn from one of

two multivariate normal distributions with distinct group-specific means %(+, 4!) but a shared

diagonal covariance matrix Σ(+):

4& ∼ Bernoulli(3),

"& | 4& ∼ MvNormal(%(+, 4!) , Σ(+))

where 4& denotes the latent group membership for participant &. This structure retains the

baseline model’s hierarchy while allowing for group-level differences. To interpret the latent

subgroups, we tested for associations between group membership and individual differences

in key indicators of Pavlovian learning, including the Rescorla-Wagner learning rate and

anticipatory arousal measured via skin conductance responses (see the Supplement).

Bayesian parameter estimation and inference

Bayesian analyses were conducted in Stan (Stan Development Team, 2023) via the

rstan R package (Stan Development Team, 2024), using the No-U-Turn Sampler (NUTS),

a variant of Hamiltonian Monte Carlo (Betancourt, 2018; Hoffman & Gelman, 2014). Four

MCMC chains were run for 20,000 iterations each (2,000 warm-up, thinning = 2), yielding

40,000 post-warm-up samples. Convergence was confirmed via traceplots, 5̂ statistics

(Brooks & Gelman, 1998), and effective sample sizes (>10,000 for all key parameters).

Model adequacy was assessed through posterior predictive checks comparing

simulated and observed grand means of hits and FAs, both overall and by study. For the

latent mixture model, checks were conditioned on group membership, and generalizability of

the two-group structure across studies was examined (see the Supplement).

We report posterior means and 89% highest posterior density intervals (HPDIs) in

the format: mean [lower bound, upper bound]. Evidence for or against effects was quantified

using the Region of Practical Equivalence (ROPE) (Etz et al., 2024; Kruschke, 2018;

Makowski et al., 2019), with standard ranges applied to the log-odds (odds ratio) scale:

[−0.18, 0.18] (≈ [0.85, 1.20] in odds ratio units) and to correlation coefficients: [-0.1, 0.1]

(Cohen, 2013; Kruschke, 2014). We specified a ROPE of [0, 0.2] for the mixing proportion,

because proportions close to zero imply that no meaningful subgroup is present.
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Results

Selective memory prioritization by emotional learning varies across time and

individuals

The Bayesian 2HT model yielded results largely consistent with the original

publication [Figure 2; panel a; Kalbe and Schwabe (2021a)]. Recognition probability was

higher for CS+ than CS- items encoded during conditioning (#CS+ = .61 [.56, .67]; #CS− =

.46 [.41, .52]), revealing robust category-selective memory prioritization (OR = 1.85 [1.54,

2.19], PrROPE = .00), which did not generalize clearly to other phases. Recognition rates for

pre-conditioning CS+ and CS− items were nearly identical (#CS+ = .54 [.48, .59]; #CS− =

.52 [.47, .58]; OR = 1.06 [0.93, 1.2], PrROPE = .93). Post-conditioning CS+ items showed

slight advantage (#CS+ = .43 [.38, .49]; #CS− = .38 [.33, .44]), but overlapped with the

ROPE (OR = 1.23 [1.09, 1.39], PrROPE = .34), providing tentative evidence for proactive

effects. These results were corroborated by both the 1HT and SDT models (see the

Supplement). An ELPD-based comparison of predictive performance ranked model fit as

follows: 1HT (-9252.43), 2HT (-9260.19), and then SDT (-9296.55), with differences not

large enough to distinguish between models (2HT vs. 1HT: ΔELPD = 7.76, SE = 12.08, z

= 0.64; 2HT vs. SDT: ΔELPD = 36.36, SE = 24.4, z = 1.49), although the evidence

marginally favored the 1HT model over SDT (ΔELPD = 44.12, SE = 23.15, z = 1.91).

Participant-level correlations revealed individual differences in category-selective

memory prioritization (Figure 2, panel b). This was most evident between conditioning and

post-conditioning phases (r = .45 [.13, .74], PrROPE = .04), with a tentative effect of

smaller magnitude between conditioning and pre-conditioning (r = .27 [.01, .53], PrROPE =

.14). In other words, individuals who selectively prioritized memory for items encoded during

conditioning were more likely to do so post-conditioning, and to a lesser extent,

pre-conditioning. We also observed a strong negative correlation between phases regardless

of CS type (r = -0.76 [-0.84, -0.67], PrROPE = .00), highlighting an additional source of

individual variability and motivating further exploration through clustering with Kohonen

self-organizing maps. The analysis revealed a two-cluster structure (Figure 2, panel c),

which we examined using individual feature maps, each reflecting similarity among
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Figure 2

Bayesian two-high-threshold (2HT) recognition model and clustering reveal two participant

subgroups.
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β5 := ∆conditioning
β6 := ∆post−conditioning
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c)

a) b)

Note. Panel a. Posterior estimates of memory recognition (#) across experimental conditions.

Error bars represent 89% highest posterior density intervals (HPDIs). Condition comparisons

are expressed using odds ratios (ORs), with the proportion of the posterior within the region of

practical equivalence (ROPE) denoted as Pr(ROPE). Panel b. Posterior correlation matrix of

individual-level parameter estimates ("), i.e., capturing effects of experimental conditions on

recognition memory. Warmer colors indicate stronger positive correlations; cooler colors indi-

cate stronger negative correlations. Matrix values represent mean posterior correlations with

associated 89% HPDIs. Panel c. Individual differences in memory recognition projected onto

a two-dimensional grid using Kohonen self-organizing maps (SOMs). Each node represents

a prototype capturing similar observations; spatial proximity reflects similarity in the under-

lying feature space. Black border indicates two participant clusters identified via k-means.

Accompanying individual feature maps show the distribution of each (scaled) feature across

the SOM grid, illustrating multivariate relationships among parameters.
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participants through spatial proximity. Specifically, maps of the grand average, phase effects,

and CS+ vs. CS- differences uncovered three axes of variation: (a) a northwest-southeast

gradient of category-selective prioritization (particularly during and post-conditioning); (b) a

west-east gradient representing overall phase effects; and (c) a diffuse pattern of the grand

average suggesting its independence.

Together, the results showed that emotional learning selectively prioritized episodic

memory for items encoded during conditioning, alongside individual differences – particularly

in selective prioritization and phase-related effects – that clustered into two distinct

subgroups.

Emotional learning leads to two latent episodic memory profiles reflecting

individual variability

Figure 3

Bayesian two-high-threshold (2HT) recognition model with latent mixture extension reveals

two distinct memory profiles.

Subgroup 1
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Pr(ROPE) = .81

OR = 2.36 [1.86, 2.99]
Pr(ROPE) = .00

OR = 1.42 [1.21, 1.69]
Pr(ROPE) = .05

Subgroup 2

CS− CS+ CS− CS+ CS− CS+
pre−conditioning conditioning post−conditioning

OR = 1.01 [0.88, 1.16]
Pr(ROPE) = .94

OR = 1.51 [1.2, 1.87]
Pr(ROPE) = .05

OR = 1.1 [0.95, 1.28]
Pr(ROPE) = .81

Base rate (φ)

0.2 0.4 0.6 0.8

89% HPDI

Note. Posterior estimates of memory recognition (#) across experimental conditions per

subgroup. Error bars represent 89% highest posterior density intervals (HPDIs). Condition

comparisons are expressed using odds ratios (ORs), with the proportion of the posterior within

the region of practical equivalence (ROPE) denoted as Pr(ROPE). The inset plot depicts

posterior proportion of the subgroups.

We formally tested for latent structure in memory recognition by extending the 2HT

model to probabilistically assign participants to two subgroups, as indicated by the
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clustering. The estimated subgroup proportion was 0.44 [0.32, 0.58], consistent with the

two-cluster solution (PrROPE = .00). These subgroups were present across all four

constituent studies, suggesting they were not driven by minor variations in experimental

procedures (see the Supplement). Furthermore, group membership was unrelated to

individual differences in Rescorla-Wagner learning rate (r = 0 [-0.04, 0.04], PrROPE = 1) or

differential anticipatory SCRs (r = -0.05 [-0.09, -0.01], PrROPE = 0.97), despite the learning

rate accounting for variation in category-selective memory prioritization for items encoded

during conditioning within the baseline 2HT model (see the Supplement). Both subgroups

exhibited similar Pavlovian learning, with overlapping distributions of learning rates

(5-number summary: Subgroup 1 = [0.01, 0.13, 0.19, 0.24, 0.53]; Subgroup 2 = [0.01, 0.12,

0.2, 0.26, 0.44]) and differential anticipatory SCRs (Subgroup 1 = [-0.26, 0, 0.02, 0.1, 0.71];

Subgroup 2 = [-0.11, 0, 0.04, 0.12, 0.78]). Overall memory recognition was comparable

between the subgroups (OR = 1.13 [1.01, 1.3], PrROPE = .8), yet the detailed breakdown by

condition – presented in Table 1 and depicted in Figure 3 – revealed distinct memory profiles.

These results suggest that the subgroups differed in how emotional learning shaped episodic

memory, rather than in associative learning performance or overall mnemonic capacity.

Profile 1: Proactive integration of memory by emotional learning

Subgroup 1 showed strong category-selective memory prioritization for items encoded

during conditioning (OR = 2.36 [1.86, 2.99], PrROPE = .00), which generalized to the items

encoded afterward (OR = 1.42 [1.21, 1.69], PrROPE = .05), but not beforehand (OR = 1.11

[0.96, 1.29], PrROPE = .81). When collapsing across stimulus type, recognition was highest

for conditioning-phase items compared to pre- and post-conditioning phases (conditioning

vs. pre-conditioning: OR = 3.39 [2.22, 5.17], PrROPE = .00; conditioning

vs. post-conditioning: OR = 9.09 [6.67, 14.29], PrROPE = .00). A similar pattern was

observed for CS- items alone, ruling out the possibility that the phase effect was driven

solely by increased recognition of CS+ items (conditioning vs. pre-conditioning: OR = 1.27

[0.99, 1.61], PrROPE = .36; conditioning vs. post-conditioning: OR = 2.39 [1.9, 3.02],

PrROPE = .00).
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Table 1

Results of the two-high-threshold (2HT) model with latent mixture extension.

Subgroup Phase CS- CS+ Odds ratio Pr(ROPE)

1 pre-conditioning .48 [.42, .55] .51 [.45, .57] 1.11 [0.96, 1.29] .81

conditioning .54 [.48, .61] .74 [.68, .79] 2.36 [1.86, 2.99] .00

post-conditioning .33 [.28, .39] .41 [.35, .47] 1.42 [1.21, 1.69] .05

2 pre-conditioning .55 [.49, .61] .55 [.49, .61] 1.01 [0.88, 1.16] .94

conditioning .40 [.34, .46] .50 [.43, .56] 1.51 [1.20, 1.87] .05

post-conditioning .42 [.36, .48] .44 [.38, .50] 1.10 [0.95, 1.28] .81

Note. Values in CS+ and CS- columns indicate recognition probability estimates. Square

brackets indicate the 89% Highest Posterior Density Interval (HPDI), representing the most

credible range of parameter estimates.

Profile 2: Segmentation of memory by temporal gaps

Subgroup 2 showed an attenuated category-selective enhancement for the items

encoded during conditioning (OR = 1.51 [1.2, 1.87], PrROPE = .05), without generalization

to pre- (OR = 1.01 [0.88, 1.16], PrROPE = .94), or post-conditioning (OR = 1.1 [0.95,

1.28], PrROPE = .81). This subgroup also displayed the effect of phase but in reverse:

recognition was highest for items encoded before conditioning, then declined across

conditioning and post-conditioning (pre-conditioning vs. conditioning: OR = 2.27 [1.67, 3],

PrROPE = .00; conditioning vs. post-conditioning: OR = 1.14 [0.78, 2], PrROPE = .48).

Again, CS- items resembled the pattern, suggesting a general phase-related decrease

(pre-conditioning vs. conditioning: OR = 1.85 [1.52, 2.26], PrROPE = .00; conditioning

vs. post-conditioning: OR = 0.91 [0.73, 1.11], PrROPE = .74).

Together, two memory profiles were identified: one with strong prioritization of

information encoded during and after conditioning, suggesting integration across event
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boundaries; and another with modest prioritization limited to conditioning, with temporal

decay indicating event segmentation.

Discussion

Emotional memories are often retained because they support adaptive behavior

(Nairne et al., 2007; Shohamy & Adcock, 2010). While emotional learning is known to

selectively prioritize threat-related information in episodic memory, less is understood about

how this influence varies across individuals – particularly for neutral events encoded close in

time but in non-threatening contexts. To address this gap, we examined individual variability

in the extent to which threat conditioning selectively prioritizes memory for semantically

related but neutral information encoded before and after conditioning. Despite undergoing

the same experimental procedure and showing similar Pavlovian learning, participants fell

into two subgroups representing distinct memory profiles, suggesting individual differences in

how emotional learning affects adaptive mnemonic generalization across temporal gaps.

One group showed a primacy-like pattern across the three phases, with better

memory for the pre-conditioning items than for conditioning, despite the latter’s emotional

salience. Within conditioning, memory was selectively and modestly enhanced for items from

the shock-predictive category, indicating discrimination between threat and safety. Crucially,

this effect did not generalize to semantically related information from the pre- or

post-conditioning phases, highlighting the role of temporal gaps in segmenting episodic

memory. This profile suggests that, in some individuals, emotional learning may be

constrained by event boundaries, resulting in episodic memory that predominantly reflects

temporal structure.

In contrast, the other group showed a distinct pattern, with better memory for

conditioning items than pre- or post-conditioning. Emotional salience appeared to disrupt

the temporal decline observed in the first group. Within conditioning, memory was

selectively and robustly enhanced for items from the shock-predictive category, and this

prioritization extended to semantically related items encoded afterward, reflecting forward

mnemonic generalization. As in the first group, no retroactive enhancement was observed,

indicating asymmetric and temporally constrained memory modulation. This profile suggests
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that, in some individuals, emotional learning may override event boundaries, resulting in

episodic memory that reflects emotional salience and integrates subsequent threat-related

information encoded under safe conditions.

Importantly, our reanalysis using cognitive modeling and considering individual

variability revealed no evidence of retroactive enhancement, reinforcing the finding by Kalbe

and Schwabe (2021a). One explanation is that, in our dataset, pre-conditioning items were

already well remembered in both groups, leaving limited opportunity for behavioral tagging –

a process proposed to benefit weak memories that would otherwise be forgotten under

typical conditions (Ballarini et al., 2009; Frey & Morris, 1997). In contrast, memory for

post-conditioning items was weakest, and thus more likely to be selectively prioritized.

Moreover, proactive strengthening may rely on distinct mechanisms, such as the carryover of

emotional states that facilitate memory integration across time (Clewett & McClay, 2024;

Tambini et al., 2016). Future work could test whether retroactive enhancement emerges

when pre-conditioning material is weakly encoded and thus more susceptible to behavioral

tagging.

The observed memory profiles may reflect how individuals perceive their environment

and store threat-related experiences. In a closely related paradigm – with extinction learning

replacing the neutral categorization task during post-conditioning – emotional learning

selectively biased source memory, increasing misattributions of items from the

shock-predictive category as having been encoded during conditioning (Laing et al., 2025).

By distorting source memory, emotional learning retroactively and proactively strengthened

memory for semantically related items. This raises the possibility that individuals prone to

such contextual distortions may also exhibit stronger memory integration across event

boundaries. However, this interpretation remains speculative, as the reported distortions

reflect item-level rather than individual-level effects. In our analysis, individual differences in

Pavlovian learning did not predict the observed memory profiles, suggesting that these may

reflect factors beyond associative learning – perhaps such as perceived emotional salience or

post-encoding consolidation (Lilja et al., 2024). These factors likely interact: lingering

emotional states may blur perceived event boundaries and disrupt source memory, effectively
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“bridging” otherwise separate episodes, whereas effective emotion regulation may preserve

normative temporal segmentation (Harris et al., 2025; McClay et al., 2023). Future work

could examine whether the effects of emotional learning on episodic memory are more

strongly shaped by individual differences during encoding (e.g., subjective event

segmentation) or post-encoding (e.g., emotional carryover).

Limitations

Our analyses of old–new recognition judgments were implemented in the High

Threshold framework, chosen for theoretical convenience rather than because it was

preferable to Signal Detection Theory. Our aim was not to adjudicate between these

accounts, as they typically yield qualitatively similar conclusions in standard recognition

tasks. The more consequential limitation for the present study lies in the old–new task

format itself (“Did you see this item?”), which is susceptible to response bias. This concern

is especially relevant in our design, where new items were not uniquely tied to an encoding

phase. In comparison, alternative forced-choice paradigms (“Which of these two items did

you see?”) can mitigate these issues by more directly measuring relative memory strength

and may provide more robust estimates in future work (Brady et al., 2022).

Conclusion

Episodic memory is naturally segmented by temporal boundaries, dividing continuous

experience into discrete episodes. This segmentation creates distinct memory units and

supports selective consolidation – some episodes being well retained while others fade, with

emotional events typically prioritized for long-term storage. Emotional learning may enhance

memory for not only the emotional episode itself but also related neutral experiences

encoded outside the emotional context yet close in time. Our findings show that such

cross-boundary memory enhancement varies across individuals and is most evident when the

emotional episode is strongly prioritized in memory. In such cases, dominant emotional

memories promote integration across later boundaries, revealing a pattern of forward

mnemonic generalization. When emotional memories are less prominent, memory remains

predominantly segmented according to temporal structure. Rather than uniformly enhancing

memory for nearby neutral events, emotional learning reshapes episodic memory for these
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events, depending on how prominently the emotional episode is represented.
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